Micro-Pulling Down-Grown Nd³⁺: (La_{1-x,}Ba_x)F_{3-x} as New Vacuum Ultraviolet Scintillator and Potential Laser Material

Marilou M. Cadatal^{1,2}, Y. Furukawa,Young-Seok Seo³, Toshihiro Tatsumi³, Minh Hong Pham^{1,2}, Carlito Ponseca Jr.^{1,2}, Shingo Ono⁴, Elmer Estacio³, Yusuke Furukawa³, Hidetoshi Murakami³, Yasushi Fujimoto³, Nobuhiko Sarukura¹⁻³, Masahiro Nakatsuka³, Kentaro Fukuda⁵, Rayko Simura⁵, Toshihisa Suyama⁶, Akira Yoshikawa⁵

Institute for Molecular Science (IMS)¹ The Graduate University for Advanced Studies² Institute of Laser Engineering Osaka University³ Opto-electronics Laboratory Nagoya Institute of Technology⁴ Institute of Multidisciplinary Research for Advanced Materials, Tohoku University⁵ Tokuyama Corporation⁶ Next target: Shorter wavelength region

Deep ultraviolet (DUV) region (250-180 nm) and Vacuum ultraviolet (VUV) region (180 nm – 50 nm)

Suitable material for VUV scintillator and

all solid – state VUV laser ?

Nd³⁺:LaF₃ Emission in the VUV

• Optical pumping Efficient LaF₃: Nd³⁺-based vacuum-ultraviolet laser at 172 nm

M. A. Dubinskii,* A. C. Cefalas, E. Sarantopoulou, S. M. Spyrou, and C. A. Nicolaides

Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 116-35, Greece

R. Yu. Abdulsabirov, S. L. Korableva, and V. V. Semashko

Kazan State University, 18 Lenin Street, 420008 Kazan, Russia

Received June 18, 1991

Vacuum-ultraviolet (VUV) laser radiation at 172 nm has been obtained from a solid-state $LaF_3:Nd^{3+}$ -based laser pumped by a pulsed-discharge molecular F_2 laser at 157 nm. The maximum slope efficiency of the solid-state laser described in this experiment was 21% (14% conversion efficiency), and the maximum output energy at 172 nm was 0.4 mJ for a nonoptimized optical cavity. This finding introduces serious prospects for realizing versions of active-medium-plus-source tunable VUV laser devices.

• Electron beam pumping

Vacuum ultraviolet laser emission from Nd+3:LaF3

Ronald W. Waynant and Philipp H. Klein Naval Research Laboratory, Washington, D.C. 20375

(Received 17 August 1984; accepted for publication 18 October 1984)

Laser emission at 172 nm has been produced by pumping a Nd:LaF₃ crystal with incoherent Kr^{*}₂ radiation at 146 nm. The 5-ns pulse contained approximately 20–30 μ J of energy. Fluorescence measurements indicate potential for tuning from 170–175 nm, which should be observable with OH⁻-free crystals.

Fig. 2. Experimental layout. L, pulsed-discharge F₂ molecular laser at 157 nm; M's, mirrors; SC, stainless-steel vacuum cham-

laser at 157 nm; M's, mirrors; SC, stainless-steel vacuum chamber; MO, monochromator; G, grating; PMT, photomultiplier; DE, detection electronics; TM, turbo molecular pump; RP, rotary crystal at 172 nm. pump; Vk, sulvee.

JOSA B 9, 1148 (1992)

FIG. 1. Excitation system for rapid pumping of Nd³⁺:LaF₃.

FIG. 3. Absorption spectra of Nd³⁺:LaF₃ samples, superimposed on the fluorescence spectra of Fig. 2.

App. Phys. Lett. 46, 14 (1985)

Nd³⁺:LaF₃ Emission in the VUV

Restricted tunability (170 – 175 nm) Electron beam pumping All-solid-state VUV laser needed

Looks attractive but not so much follow-up work

Purpose

"Investigate Nd³⁺: (La_{1-x}, Ba_x)F_{3-x} (x=0.1) grown by Micro – PD method as new VUV scintillator and potential laser material"

Growth of Nd³⁺:La_(1-x)Ba_xF_(3-x) (x=0.1) by Micro-Pulling Down Method

Micro-PD apparatus for fluoride crystal growth

A. Yoshikawa, T. Satonaga, K. Kamada, H. Sato, M. Nikl, N. Solovieva, T. Fukuda, J. Cryst. Growth 270, 427 (2004)

Transmission Characteristics of $La_{(1-x)}Ba_{x}F_{(3-x)}$ (x=0.1) and LaF_{3}

Fluorescence spectra of $Nd^{3+}:La_{(1-x)}Ba_{x}F_{(3-x)}$ (x=0.1) and $Nd^{3+}:LaF_{3}$

VUV Fluorescence spectra of $Nd^{3+}:La_{(1-x)}Ba_{x}F_{(3-x)}$ (x=0.1) and $Nd^{3+}:LaF_{3}$

IR Fluorescence spectra of Nd³⁺:La_(1-x)Ba_xF_(3-x) (x=0.1)

Experiment: Set – up for Evaluating VUV Fluorescence Lifetime of Nd³⁺:La_(1-x)Ba_xF_(3-x) (x=0.1)

Experiment: Streak Camera Image of Nd³⁺:LaF₃ Fluorescence

Experiment: Nd³⁺:(La_{1-x}Ba_xF_{3-x}) (x=0.1) and Nd³⁺:LaF₃ Temporal Profile

 $Nd^{3+}:(La_{1-x}Ba_{x})F_{3-x}$ (x=0.1) fluorescence decays faster

Summary

- Nd³⁺:(La_{1-x}, Ba_x)F_{3-x} (x = 1) single crystal is successfully grown using the micro-Pulling Down method.
- Undoped Nd³⁺:(La_{1-x}, Ba_x)F_{3-x} (x = 1) sample has short transmission edge at 160 nm compared to LaF₃ at 180 nm.
- Strong VUV fluorescence with peak located at 175 nm.
- Broad VUV fluorescence with FWHM of 12 nm compared to $Nd^{3+}:LaF_3$ with FWHM of 8 nm.
- [1] <u>M. Cadatal</u>.et al, J. Appl. Phys., 46 (2007) L985 L987.
- [2] M. Cadatal, et al, J. Opt. Soc. Am. B in press