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INTRODUCTION

Laser-driven proton sources can deliver several tens of
MeV particle energies from the compact, transient acceler-
ating structure generated by laser-matter interactions at rel-
ativistic intensities. The future development of novel appli-
cations such as fast proton ignition requires improvements in
the proton energy, beam divergence, and laser to proton en-
ergy conversion efficiency.

In target normal sheath acceleration (TNSA)[1], an intense
laser pulse irradiating a flat solid-density target heats electrons
and sets up a picosecond-duration and up to TV/m sheath field
that gradually accelerates protons off the target surface. The
proton beam quality is thus linked to the hot electron spectrum
and the density distribution and lifetime of the sheath.

We have carried out two-dimensional and three-
dimensional particle-in-cell simulations[2, 3] which indicate
that nanosecond-duration sub-kT magnetic fields, accessible
by capacitor-coil targets developed at ILE[4], suppress lateral
sheath electron transport, increase electron heating and could
deliver enhanced TNSA performance.

Experiments at the LFEX laser facility will be aimed at
measuring for the first time the impact of an applied kT-
level magnetic field on laser-driven proton acceleration in the
TNSA regime. The LFEX laser facility is the only facility ca-
pable of generating a nanosecond-duration kT-level magnetic
field, can simultaneously drive TNSA, and is also uniquely
suited for investigating factors which affect the sheath dynam-
ics such as electron heating and lateral transport. The capa-
bilities of the LFEX laser facility will allow us to conduct a
proof-of-principle experiment into the effects of strong mag-
netic fields in TNSA, including a magnetic field strength scan
to observe the onset of magnetic field effects.

EXPERIMENTAL SETUP

We used three GXII beams to generate a strong magnetic
field and a single LFEX to accelerate proton beam via TNSA
in this experiment. Experimental geometry is shown in Fig.1
Each GXII beam, which has 800 +/- 50 J of energy in 1054
nm of wavelength, is focused on capacitor-coil within xx of
spot size. The capacitor-coil target might generate ~ 2 kT at
coil center 1.2 ns after GXII peak with 500 um of coil diame-
ter and 50 um of wire diameter[5]. LFEX, which has 350 +/-
50 J of energy in 1054 nm of wavelength, is irradiated to CH

coil

~

——

TA 400x200x50 *

L
CH 200x200x50 . 5mm l 30 mm

Al 1000x1000x10 RCF

FIG. 1. Experimental setup for 3D design and 2D geometry. CH
foil as a proton source was put on tantalum, which protect CH foil
from some radiation. These targets are placed at the center of a coil.
CH foil and tantalum’s dimension are 200 x 200 x 50 um and 400 x
200 x 50 um. An aluminum foil was put 5 mm away from CH foil.
It also protects CH foil from radiation. RCFs put 30 mm away from
aluminum detect the proton beam. RCFs have a hole at center to pass
the proton to Thomson parabola spectrometer.

foil. CH foil was on a tantalum shield to be protected from
radiation and a plasma generated on capacitor-coil. Acceler-
ated proton beam was measure on a radiochromic film(RCFs)
at 35 mm far from the foil. RCFs have a hole at its center, the
spectra of a proton beam through the hole was measured by
Thomson parabola ion spectrometer. The spectra of the accel-
erated electron were also measured. The aluminum shield put
5 mm away from the foil protects the rear surface of the foil
from radiation.

RESULTS

Figure 2 shows the plots of maximum proton energy against
the delay. O ps of a delay represents that GXII and LFEX
reach the targets at the same time. A positive delay means that
LFEX comes after the peak of GXII. An inset figure in Fig.2
shows the measured proton image without a capacitor-coil tar-
get. The maximum energy of this proton was 21.6 MeV. The
lowest energy was 5.8 MeV with an application of B-field.

The acceleration energy of proton decreased with the de-
lay between GXII and LFEX. The delay corresponds to the
strength of magnetic field so that magnetic field rises when
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FIG. 2. Maximum proton energy against the delay between GXII
and LFEX. Maximum proton energy decrease with the delay. Circles
and solid line represent the proton energy using a coil. Crosses and
dashed line represent the proton energy using only plates. Positive
delay corresponds to that LFEX reaches the target after the peak of
GXII beams. An inset figure shows the proton image obtained with
only LFEX. The number in a figure shows the shot ID.

the delay increases. We expect that the maximum energy
of the proton beam would increase with the delay in theory.
However, the maximum energy of the proton beam decreased
against our expectation. This decrease might be caused by the
effect of radiation from a capacitor plate irradiated by GXII
beams. The energy of three GXII beams is high enough to
generate high energy x-ray. The high energy x-ray can heat
a rear surface of the proton source, causing a deformation of
the rear surface. A sheath electric field weakens due to the
deformation of a rear surface generates and leads to lower ac-
celeration.

The proton energy increased a bit at 230 ps. We hope this
increase was the effect of the applied magnetic field.

We also carried out the experiments using the capacitor
plates which do not have a coil to confirm the effect of ra-
diation. In this case, the maximum proton energy was higher
than proton energy in case of using a coil. These results in-
dicate the radiation from the coil itself can heat the proton
source apart from capacitor plates.

A large current flows in a coil after the laser irradiation.
Ohmic heating due to the large current leads a coil expansion.
The expanding coil may touch the tantalum shield and proton
source. The experiment in other geometry was also performed
to remove the possibility of a contact.

The clear change in proton images was observed changing
the coil position. Figure 3 shows each target geometry and the
obtained proton images. The proton source was put at the cen-
ter of a coil in an original arrange as shown in Fig.3(a). The
proton image measured having 9.9 MeV of maximum proton
energy.at -10 ps was clear pattern (Fig.3(b) ). In the other ar-
range, the proton source was put at 250 um away from the

FIG. 3. Target arranges and obtained proton images. A proton source
was put at a center of a coil in an original arrange(a). In this case,
clear proton pattern having 9.9 MeV of maximum energy was ob-
served at -10 ps(b). In the other arrange, a proton source was put
250 um away from a center of a coil(c). The apparent difference in a
proton image was observed at -30 ps. However, the maximum energy
of proton (7.5 MeV) was lower than (c). Numbers shown in proton
images represent a shot ID each other.

center of a coil as shown in Fig.3(c). The proton image mea-
sured at -30 ps on this arrange have a characteristic pattern
shown in Fig. 3(d). It seems that the protons are collimated
at the top right of a hole. However, the maximum energy of
proton in this geometry was 7.5 MeV, lower than the energy
in the original arrange. The radiation from a coil itself may
still have caused this decrease.

SUMMARY

In summary, the proton acceleration using a capacitor-coil
in this experiment is pretty sensitive to the influence of radia-
tion which is generated when GXII laser irradiates a capacitor-
coil target. The acceleration energy of proton decreased with
the delay between GXII and LFEX. This was caused by the
radiation from a capacitor plate. And a decrease of proton en-
ergy was suppressed using only the capacitor plates. Results
indicate the radiation from the coil itself can heat the proton
source.

The evident change in proton images was observed chang-
ing the coil position. However, the maximum energy of proton
was still small due to radiation.

We used the shield for generated radiation, but it did not
work in this experiment. For the future experiment, we need
to improve the counterplan of the generated radiation.
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INTRODUCTION

Relativistic electron (RE) acceleration by a
high-intensity laser is an important to produce fusion
plasma heating and TNSA proton acceleration etc.
Dependence of RE kinetic energy distribution on laser
intensity has been studied'?. However, effects of pulse
duration did not be taken into account in the previous
works. A material and plasma are continuously irradiated
by relativistic laser pulse over multi-pico-second in the
recent kilojoule-class PW laser facilities such as LFEX
in Japan, LMJ-PETAL in France, OMEGA-EP and
NIF-ARC in US. We observed generation of
super-ponderomotive relativistic electrons (SP-REs) in
multi-ps laser-plasma interaction using ultra high
contrast LFEX laser pulse in our previous experiment.

We clarified that self-generated static electric and
magnetic fields are essential for the generation of
SP-REs with the help of particle-in-cell (PIC)
simulations. In the first stage, SP-RE are generated by a
combination of a laser field and a quasi-static
self-generated electric field® in the acceleration region. In
the second stage, the SP-RE energy is boosted
furthermore by the loop-injected-direct-acceleration
(LIDA) mechanism*, where SP-REs are kicked back
again to the acceleration region by a strong quasi-static
Mega-Gauss magnetic field generated spontancously at
the critical surface. Amplification of the spontaneous
magnetic field up to Mega-Gauss strength takes several
picoseconds. We found in the PIC simulation that
generation of spontaneous quasi-static magnetic fields
synchronizes with the expansion of the critical surface
heated by the continuous PW laser irradiation. This has
not been recognized in the previous studies®®. We have
developed a model to describe the ultra-fast
hydrodynamics of a PW laser-heated plasma’. In this
research, we experimentally verify the following two
numerical findings. (1) Sudden growth of spontaneous

magnetic field growth. (2) Synchronization between the
SP-RE generation timing and the plasma expansion
timing. The measurements will be compared with the
PIC and the model calculations.

LFEX laser pulses will be stacked temporally with
arbitrary delays between the beams. In this study, a
single beam (case A: 1.2 ps FWHM pulse duration and
peak intensity of 2.5x10'® W/cm?) and stacked beams
(case B: 3.0 ps FWHM pulse envelope and peak intensity
of 3.0x10'® W/cm?) will be used. The energy distribution
of REs emanated from the target to the vacuum was
measured with an electron energy analyzer located 20.9°
from the incident axis of the LFEX laser. Time evolution
and spatial profile of the magnetic field will be observed
by a time-gate camera with time-jitter-less 500 fs optical
probe laser. Ultra-fast motion of laser-plasma interaction
surface will be observed by Frequency-Resolved Optical
Gating (FROG) technique.

POLARIZATION GATING FROG (PG-FROG)

The FROG with high temporal resolution and high
wavelength resolution has been designed in the
collaboration with Dr. G E. Kemp of LLNL. In the
FROG, a pulse is divided into a signal pulse
(transmission) and a gate pulse (reflection) using a
70R/30T beam splitter. The signal pulse is incident into
the Glan-Taylor polarizer. The first polarizer transmits
only p-polarized component, and the transmitted pulse is
focused into the nonlinear medium (NLM) using a
cylindrical lens (f=70 mm). The gate pulse rotates the
polarization of the signal pulse by the optical Kerr effect
in the NLM. Birefringence is induced only when gate
pulses are present. After re-collimating the signal pulse
with a cylindrical lens (f=70 mm), the desired signal is
separated using an analyzer. In our configuration, the
extinction ratio is about 10 or more when Glan-Taylor
polarizers pair has crossed arrangement. A cylindrical
lens with 130 mm focal length relays an image on NLM



to a camera with keeping temporal profile, while the
autocorrelation signal is spectrally resolved by a
holographic diffraction grating (reflective grating) with
1200 Grooves/mm and a cylindrical lens with 150 mm
focal length.

LFEX EXPERIMENT

The first LFEX experiment was held last November.
One LFEX beam delivered 230 J of 1.053 um
wavelength laser light with a 3.3 ps duration (FWHM).
The spot diameter on a target was 30 wm of the full
width at half maximum (FWHM), and about 60% of the
laser energy was contained in this spot. The peak
intensity of one beam was 3.9x1018 W/cm2. The
contrast ratio of the LFEX laser pulse was 109 at 1.2 ns
before the main pulse. The main beam was focused on an
aluminum-coated optically polished BK7 glass by an
f/10 off-axis parabolic mirror. A typical FROG signal
was observed when a filter with an appropriate optical
density was installed in the CCD camera (Fig. 4). From
this signal, the pulse width was estimated to be 3.3 ps
(FWHM), which agreed with the result of single shot
autocorrelator. Moreover, the spectral width is estimated
to be 1.6 nm (FWHM). This value indicates that
spectrum narrowing occurs in the disk amplifier. (The
spectral width is approximately 2 nm before passing
through the disk amplifier.)

When we removed the neutral density filter of the
CCD camera, a weak red shift component produced by
plasma motion was observed. The most shifted
component shifted about 7 nm from the center
wavelength. This value strongly depends on the degree
of ionization and the degree of ionization estimates about
7 to 8 from spectrum shift. This corresponds to the
degree of ionization calculated by corresponding laser
intensity for over-the-barrier ionization of aluminum.
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Introduction

In this research we tried to measure
Zeeman splitting in the soft X-ray range
emitted from a magnetized silicon plasma
produced by laser. Silicon is one of the
abundant materials of the universe and
Zeeman splitting is a measure of the
magnetic field in astronomical observation.
We used a capacitor coil target to generate
a kilo-tesla level seed field and compress
the seed field by laser driven implosion.
According to hydrodynamic calculations, a
peak field of 10 kT can be achieved on
GEKKO-XII. This strength is close to what
is found on the surface of a white dwarf.
The X-ray spectrum measured in the
laboratory will be compared with
astronomical observations. This is also a
technique for measuring very strong
magnetic fields generated in the laboratory.

Experimental purpose

We focus on Zeeman spectroscopy of soft
X-rays emitted from a magnetized high
energy density plasma of 10 kT field in this
research. The goal of this experiment
design is to observe a nonlinear Zeeman
effect in the laboratory. This is an important
physics for determining the magnetic field
strength from the astronomical spectrum.
Silicon is one of the abundant materials of
the universe. We intended to observe the
change in the spectral shape emitted from
the laser-generated magnetized silicon
plasma in the soft X-ray region with
changing the magnetic field strength. It is

difficult to accurately calculate nonlinear
Zeeman effect other than hydrogen and
hydrogen like ion. The laboratory
experiments are essential for identifying
nonlinear effects in multi-electron atom
systems. Based on our laboratory
measurements, we try to find Zeeman
splitting lines in astronomical data. This
behavior may reveal how laboratory
astrophysics contributes to traditional
astronomical research.

Experimental design

According to the actual experimental
arrangement, during the FO-03 experiment
series target shots has been divided into 2
parts, which are magnetic-field
measurements and the Zeeman effect
measurements.

In the magnetic-field measurement
experiment, we used a capacitor coil target
as the main target, and an Al foil as the
source of proton shadowgraph. The
experiment schematic is shown in Fig. 1(a).
The magnification of the image on the RCF
1s 15x.

In the spectra measurement experiment,
two capacitor coil targets were used to
generate seed field to compress a ~10 kT
strength strong magnetic field. A Si02 foam
(5 mg/cc) filled polyimide cylinder was
placed at TCC as the main target. The
spectra were observed by a EUV
spectrometer. The experimental design is
shown in Fig. 1(b).



P
Proton source
Capacitor coil

" RCF & Holder

Al shields

Capacitor-coil target

Cylinder

Capacitor-coil target

Figure 1 (a). B-field measurement

Experiment and preliminary results

The primary experiments were performed
in two days 4 shots. The B-field
measurement experiments were performed
on 14th February and the spectra
measurement are performed on 15th
February.

In the experiments of B-field generation,
with a LFEX time delay of 290 ps (~325 ps
before the GXII
implosion  beams
peak) we got a comb
shape pattern on the
RCF (Fig. 2), which
indicate a existence

of B-field.
Simulations will be
performed to

estimate magnetic
field strength in the

Figure 2. RCF result
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Figure 3. A probable splitting
future.

(b) Spectra measurement

We can find several probable Zeeman
splitting peaks in the spectra measurement
experiment. An example is shown in Fig. 3.
A Roughly estimation of the peak energy is
around ~80 nm. Next step we will try to
calculate the plasma parameter, confirm the
energy range of the potential Zeeman
splitting lines, identify the elements and
transitions. The comparisons between these
lines, calculational and astronomical ones
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Figure 4 EUV data