

共同利用•共同研究成果報告書

(令和4年4月-令和5年3月)

ILE Annual Report of Collaborative Research April 2022 - March 2023 大阪大学レーザー科学研究所は、国内外の共同研究者の皆様と共に、汎用性の高いレーザー技術を発展させ、レーザーが拓く人類未踏の世 界を探究することで、学術の開拓と革新的技術の創生に努めています。最先端レーザー技術をベースとした基礎及び応用に関する研究・教育 を推進するとともに、共同利用・共同研究拠点として国内外の大学又は研究機関等の研究者の共同利用に供してきました。皆様のご理解とご 協力のもと、令和4年度より、当研究所は新たに「高エネルギー密度科学先端研究拠点」として共同利用・共同研究の拠点に認定されました。 学際的な高エネルギー密度科学の探求を通して世界を先導する国際的な研究拠点としてデジタルトランスフォーメーションを推進し、新た な共創による知の創出を加速させ、イノベーション創出を実現する価値創造システムを構築することを目標としています。当拠点活動とし て、これまで通り、光材料工学、光デバイス工学、レーザー工学ならびにテラヘルツフォトニクスやパワーフォトニクスなどを始めとしたレ ーザー科学やレーザー宇宙物理学やレーザー核融合などを含めた高エネルギー密度科学などの学際分野で多くの成果が得られています。こ れらの活動の成果を、共同研究成果報告書としてまとめましたので、ご高覧いただければ幸いです。

令和4年度は、前述の通り「高エネルギー密度科学先端研究拠点」として新たな拠点事業を開始するとともに、当研究所の強みを活かし更 なる飛躍と新たな人材育成を目標に組織整備を行いました。国際競争力ある独自のレーザー技術と設備を基盤とし、多様なステークホルダー との協働により、一層高度な"知"と付加価値を生み出す国際的な拠点を目指して、当研究所の強みである学際連携・国際連携・施設連携・ 産学連携の一体的な運営を可能とするマトリクス共創推進センターを設置しました。これにより、大学の国際競争力と世界の知をよび寄せる 求心力を向上させ、世界水準の知識集約型の教育研究拠点としての大学機能を強化いたします。令和4年度、各種連携において大きな成果が 得られています。また、複数の連携による共創へ向けた取り組みも開始いたしました。例えば、学際連携+国際連携の推進を目的に、レーザ ー連携室を大阪大学人文学研究科に設置(令和4年7月1日)し、レーザーによる文化財探索を行うとともに文理連携の人材交流を開始しま た。さらに、文理連携をより加速するために、フィリピンのサン・カルロス大学博物館長を客員教授として招へい致しました。加えて、産学 連携+国際連携+施設連携として、ルーマニア政府の資金のもとルーマニアに3者連携(阪大レーザー、オカモトオプテイクス、ELI-NP)に よる新たな施設(仮称:高出力光学センター)の設置と先端光学素子の共同研究開発を進める合意が正式に決定されました。なお3者の合意 書交換式は、令和4年3月7日、ヨハニス ルーマニア大統領と岸田首相立ち合いのもと首相官邸で行われました。

令和5年度において、前述の通り、「高エネルギー密度学先端研究拠点」としての拠点事業とともに、新たに設置したマトリクス共創推進 センターの活動を学内から国内外に展開し新たな共創と人材育成に貢献する予定です。さらに多様なステークホルダーからの利用が期待さ れている 100J 級の繰り返しパワーレーザーシステムの整備・利用が計画されています。レーザー科学ならびに高エネルギー密度科学を発展 させ、より幅広いコミュニテイの期待に応えることができる拠点活動を推進していきたいと思っております。共同研究者の皆様と共に新しい 学問領域を開拓するとともに社会に貢献していきたいと考えております。今後とも当拠点活動に対する皆様のご理解ご支援のほど、よろしく お願い申し上げます。

令和5年6月

大阪大学レーザー科学研究所長 兒玉 了祐

レーザー宇宙物理学 Laser Astrophysics

2022A1-001YAMAZAKI	Experiments of collisionless shocks propagating into magnetized plasma	Ryo Yamazaki	青山学院大学·理工学部	P.9
2022A1-002KOENIG	Radiative shocks as star progenitors	KOENIG	Laboratoire LULI	P.10
2022A1-004MATSUKIYO	Long time evolution of magnetized plasma shock generated by high power laser	Shuichi Matsukiyo	九州大学・大学院 総合理工学研究院	P.11
2022A1-006MORACE	Demonstration of ultra-high intensity LFEX with Hyperbolic Plasma Mirror for generation of Relativistic Electromagnetic Shock and near-relativistic ion beams.	Alessio Morace	Institute of Laser Engineering	P.12
2022A1-012TANAKA	Structure of magnetized bow shock and magnetic reconnection in astrospheres	Shuta Tanaka	青山学院大学 理工学部 物理科学科	P.13
2022A1-015BOLOUKI	Experimental investigation on the magnetic reconnections driven by electron dynamics.	Nima Bolouki	Ming Chi University of Technology	P.14
2022A1-022SAKAWA	Particle acceleration via magnetic reconnection using coil target	Youichi Sakawa	Institute of Laser Engineering, Osaka University	P.15
2022B2-023ISAYAMA	Particle acceleration by counter propagating waves in magnetized plasma	Shogo Isayama	Kyushu University	P.16
2022B2-025TANAKA	Preparation to laser experiments of induced Compton Scattering	Shuta Tanaka	青山学院大学理工学部 物理科学科	P.17
2022B2-030TAKEZAKI	Development of pulsed magnet for magnetized collisionless shock experiment using high power laser	Taichi Takezaki	富山大学・工学部	P.18
2022B2-037MIZUTA	Study of laboratory experiments of hydrodynaimc instabilities in astrophysical jet propagation by ultra-intense lasers	Akira Mizuta	理化学研究所·開拓研究本部	P.19
2022B2-038TOKUMOTO	Development of New Soil Moisture Detection System by Neutrons	Ieyasu Tokumoto	佐賀大学・農学部	P.20
2022B2-039FUKUDA	Ion acceleration using collisionless shocks produced in nonequilibrium plasmas	Yuji Fukuda	Kansai Photon Science Institute (KPSI), National Institutes for Quantum and Radiological Science and Technology (QST)	P.21
2022B2-056KISAKA	Theoretical study for experimental verification of coherent radiation and stimulated emission conditions for fast radio bursts	Shota Kisaka	広島大学大学院 先進理工系科学研究科	P.22

2022B2-061OHIRA	Investigation of plasma instabilities in the collisionless shock foot region	Yutaka Ohira	The University of Tokyo	P.23
超高圧物性·惑星物理学 Hig	h Pressure/Laser Earth & Planetary Science			
2022A1-026OZAKI	Observation of phase transition kinetics using laser-driven decaying shock compression	Norimasa Ozaki	大阪大学・大学院工学研究科	P.24
2022A1-028SATO	Melting behavior of silicate during planetary evolution	Tomoko Sato	Department of Earth and Planetary Systems Science, Hiroshima Univ.	[/] P.25
2022B2-050YANO	Fundamental Development of Microparticle Capture System through Hypervelocity Impact Simulations and Experiments at $>\!10~\rm km/s$	Hajime YANO	国立研究開発法人・宇宙航空研究 開発機構・宇宙科学研究所	P.26
	netic Field Science			
2022A1-2021004JOHZAKI	Development of electron beam control scheme using kilo-tesla-class self-generated-resistive magnetic fields	Tomoyuki JOHZAKI	Hiroshima University • Graduate school of advanced science and engineering	P.27
2022B2-032JI	Data analysis of low-beta reconnection driven by laser-powered capacitor coils	Hantao Ji	Princeton University	P.28
2022B2-044NISHIUCHI	Investigation of the formation of high intensity laser produced highly charged heavy ion plasmas	Nishiuchi Mamiko	QST	P.29
2022B2-047TAGUCHI	Interaction between ultra-intense laser and plasmas	Toshihiro Taguchi	日本原子力研究開発機構 敦賀総合研究開発センター	P.30
 量子ビーム科学 Quantum Be	am Science			
2022A1-014ARIKAWA	Laser driven polarized neutron generation and proof of principle of high magnetic field measurement	Yasunobu Arikawa	大阪大学レーザー科学研究所	P.31
2022A1-020YOGO	"Dynamic Neutron Analysis" enabling single-shot measurements of nuclei	余語覚文(阪大)	大阪大学レーザー科学研究所	P.32
2022A1-2020001MIRFAYZI	Laser-driven Cold/Thermal Neutron: Activation and Radiography Applications	Mirfayzi, Seyed Reza		P.33
2022A1-2020002KRISHNAMURTHY	Bright laser-driven x-rays and neutron source in liquid micro-cluster target via strong shock waves	Krishnamurthy Manchikanti	TIFR	P.34

2022B2-026HIGASHIGUCHI	Regenerative D2O target for high-repetition rate laser-driven quantum beam source	Takeshi Higashiguchi	宇都宮大学・工学部	P.35
2022B2-033ABE	Study on laser-driven repetitive particle acceleration using liquid jet targets	Yuki Abe	大阪大学大学院工学研究科	P.36
2022B2-040HATA	Ionization physics and its control on ultrahigh intense laser ion acceleration	Masayasu Hata	Kansai Photon Science Institute, National Institutes for Quantum Science and Technology	P.37
2022B2-042IWAMOTO	Development of a solid deuterium foil target system for laser neutron generation	Akifumi Iwamoto	核融合科学研究所	P.38
2022B2-057HAYAKAWA	Study of stellar nucleosynthesis using laser-driven neutrons	Takehito Hayakawa	量子科学技術研究開発機構・ 東海量子ビーム応用研究センター	P.39

プラズマ科学 Plasma Science

2022A1-009FUJIOKA	Tailoring of Relativistic Laser-Plasma Interactions in Multi-Pico-Second Time Scale	Shinsuke Fujioka	大阪大学レーザー科学研究所	P.40
2022A1-021SHIGEMORI	Revisit of the ablation scaling with high power laser irradiation	Keisuke Shigemori	Institute of Laser Engineering, Osaka University	P.41
2022B2-011CAMPOS	Dependence of Richtmyer-Meshkov Instability growth on gas compressibility	Francisco Cobos Campos	University of Castilla-La Mancha	P.42
2022B2-016INUBUSHI	Study of transient state of intense-laser-produced plasma using femtosecond X-ray spectroscopy	Yuichi Inubushi	公益財団法人高輝度光科学研究セ ンター XFEL利用研究推進室	^z P.43
2022B2-018SENTOKU	Study of isochoric heating physics driven by intense laser using XFEL	Yasuhiko Sentoku	Institute of Laser Engineering, Osaka University	P.44
2022B2-019SENTOKU	Developing a photon scattering model in non-thermal high energy density plasmas in PICLS code	Yasuhiko Sentoku	Institute of Laser Engineering, Osaka University	P.45
2022B2-020IWATA	Theoretical study on particle acceleration in high energy density plasmas created by kJ class ultraintense lasers	Natsumi Iwata	大阪大学·高等共創研究院	P.46
2022B2-022MORI	Investigation of electromagnetic wave propagation absorption and plasma heating with counter-illuminating intense laser pulse	Yoshitaka MORI	光産業創成大学院大学	P.47
2022B2-059HIGASHI	Generation of superponderomotive electrons using multipicosecond relativistic- intensity laser	Naoki HIGASHI	Faculty of Engineering, Hokkaido University / 北海道大学大学院工 学研究院	P.48

テラヘルツ光科学 Terahertz Science

2022B1-001ONO	Development of broadband antireflection structure in THz region	ONO SHINGO	名古屋工業大学・工学研究科	P.49
2022B1-003MATSUI	Terahertz fast switching utilizing organic semiconductors	Tatsunosuke Matsui	三重大学大学院工学研究科 電気電子工学専攻	P.50
2022B1-006ASAKAWA	Smith-Purcell radiation emitted from a femtosecond electron bunch.	Makoto Asakawa	Kansai University Faculty of Engineering Science	P.51
2022B1-007TANI	Study on high-efficiency terahertz wave generation by metallic spintronic devices	Masahiko Tani	福井大学・遠赤外領域開発研究セ ンター	P.52
2022B1-009MARUYAMA	Terahertz spectroscopy identification and imaging of biomineral crystal polymorphs	Mihoko Maruyama	大阪大学高等共創研究院/大学院 工学研究科	P.53
2022B1-010KAWAYAMA	Development of ultra-fast terahertz wave measurement system and measurement of conductivity with thermodynamic fluctuation	Iwao Kawayama	京都大学大学院エネルギー科学研 究科	P.54
2022B2-005LEE	Application of Japanese Traditional Pattern (Seigaiha Pattern) to THz-SRR Pattern	Sang-Seok Lee	鳥取大学工学部電気情報系学科	P.55
2022B2-006KAN	Ultrafast detection of terahertz electric field induced by quantum beam	Koichi Kan	大阪大学産業科学研究所	P.56
2022B2-015KUWASHIMA	simultaneity of laser modes in laser chaos through plasmon antenna	クワシマ フミヨシ	福井工業大学工学部	P.57
2022B2-027MAKINO	Terahertz characterization of materials for post 5G/6G technologies	Kotaro Makino	産業技術総合研究所・ デバイス技術研究部門	P.58
2022B2-045MORITA	Spin manipulation using high power THz pulse	Ken Morita	Chiba University	P.59
2022B2-046NASHIMA	Fabrication of metal hole with sharp transmission spectra in terahertz region	菜嶋茂喜	大阪市立大学	P.60
2022B2-049SALVADOR	Radiation damage investigations on MBE-grown GaAs/Si epilayers	Arnel A Salvador	National Institute of Physics University of the Philippines- Diliman	P.61
2022B2-053KOBAYASHI	Selective Decontamination of Tritium in Radioactive Water Using Terahertz and Ultraviolet Light	Kaori Kobayashi	富山大学·学術研究部理学系	P.62
2022B2-054KUWASHIMA	Low cost and stable CW-THz spectroscopy for volcanic ash	Fumiyoshi Kuwashima	Fukui Univ. of Tech.	P.63

パワーレーザー科学 Power Laser Science

2022B2-008SASAKI	Statistical simulation of optical material and its application	Akira Sasaki	量子科学技術研究開発機構· 関西光科学研究所	P.64
2022B2-013FUJITA	Research on development, control, applications of quantum beam sources	Masayuki Fujita	レーザー技術総合研究所	P.65
2022B2-017KANABE	Improvement of LFEX laser system.	KANABE Tadashi	福井大学 学術研究院 工学系部門 電気·電子工学講座	P.66
2022B2-060NAKAMURA	Optical image transfer by using a multimode fiber	Tomoya Nakamura	産業科学研究所	P.67

光学材料 Laser&Optical Material

2022B1-002MURATA	Improvement on characteristics of Pr3+-doped glass scintillator for neutron detector	Takahiro Murata	Faculty of Advanced Science and Technology, Kumamoto University	P.68
2022B1-004RADUBAN	Exploring fast ultraviolet cross-luminescence scintillation from barium fluoride crystal under high pressure	Marilou Cadatal RADUBAN	School of Natural Sciences, Massey University	P.69
2022B2-004FUJIMOTO	Development on advanced functional optical fiber devices and its application	Yasushi FUJIMOTO	Chiba Institute of Technology	P.70
2022B2-012IWASA	Luminescence properties of rare-earth doped mixed-anion compounds	Yuki Iwasa	産業技術総合研究所	P.71
2022B2-034YOSHIKAWA	Production of Organic Functional Crystals by Using Intensive Lasers	Hiroshi Yoshikawa	大阪大学大学院工学研究科物理 学系専攻	P.72
2022B2-036MORI	Development of high-quality optical borate crystals	Yusuke Mori	大阪大学大学院工学研究科電気 電子情報通信工学専攻	P.73
2022B2-048SAMSON	ZnO Synthesis (via Spray Pyrolysis) and Optical Characterization for Radiation Detection	Vallerie Ann Innis Samson	Philippine Nuclear Research Institute	P.74
2022B2-051ASUBAR	PL spectroscopy of ex-situ regrown AlGaN layers for enhancement mode GaN- based MIS-HEMTs	Joel T. Asubar	University of Fukui	P.75
2022B2-052KUROSAWA	Development of Transparent Ceramics III	Shunsuke Kurosawa	東北大学・未来科学技術共同研究 センター	P.76
2022B2-055YOKOTA	Growth and evaluations of optical properties of novel oxide single crystals with high melting point	Yuui Yokota	Institute for Materials Research, Tohoku University	P.77

2022B2-058UMEMU	JRA
-----------------	-----

一般共同研究 General Subjects

2022B1-005HABARA	Modeling of magnetic field creation via resistivity gradient in the high density plasma	Hideaki HABARA	Graduate School of Engineering, Osaka University	P.79
2022B2-001FURUKAWA	Development of integrated simulation code on laser processing using ultra short pulse lasers.	Hiroyuki Furukawa	公益財団法人レーザー技術総合研 究所 理論・シミュレーションチーム	P.80
2022B2-002TANABE	Evaluation of laser speckles with red, green, and blue colored laser light sources and its suprresion	Minoru Tanabe	国立研究開発法人 産業技術総合研究所	P.81
2022B2-003MATSUOKA	Nonlinear interaction in multi-layer fluid interfaces with density stratification	Chihiro Matsuoka	大阪市立大学・大学院工学研究科	P.82
2022B2-007HEYA	Study on optimization of laser peening conditions	Manabu Heya	大阪産業大学工学部 電子情報通信工学科	P.83
2022B2-009HIROSE	Radiation MHD simulations of accretion disks	Shigenobu Hirose	Center for Mathematical Science and Advanced Technology, JAMSTEC	P.84
2022B2-010ODA	Development of real-time target control system for application of repetitive-pulse high-power laser	Yasuhisa Oda	摂南大学理工学部機械工学科	P.85
2022B2-014FURUTA	THz radiation and absorption properties of CNT films	Hiroshi Furuta	高知工科大学・システム工学群	P.86
2022B2-021FURUSE	Development of transparent ceramics	Hiroaki Furuse	北見工業大学	P.87
2022B2-024SANO	Decay instabilities of whistler waves in solar wind plasmas	Takayoshi Sano	Institute of Laser Engineering	P.88
2022B2-028KAWAMURA	First principles calculation of optical and thermal properties of GaN	Takahiro Kawamura	三重大学大学院工学研究科 機械工学専攻	P.89
2022B2-029MOTOKOSHI	Additive manufacturing of silica glass structure by laser writing	Shinji Motokoshi	Institute for Laser Technology	P.90
2022B2-031MASADA	Development of a sub-grid scale model for a stellar convective transport	Youhei MASADA	愛知教育大学・理科教育講座	P.91
2022B2-035SUNAHARA	Numerical modeling of plasma facing materials	Atsushi Sunahara	Center for Materials Under Extreme Environments (CMUXE), School of Nuclear Engineering, Purdue University	P.92

2022B2-041OTANI	Research and Development of MKIDs detector using superconducting metamaterial	Chiko Otani	国立研究開発法人理化学研究所・ 光量子工学研究センター・テラヘル P.93 ツイメージング研究チーム
2022B2-0430GINO	Development of novel excitonic luminescence materials by layered mixed-anion compounds	Hiaraku Ogino	産業技術総合研究所 エレクトロニ クス・製造領域 電子光基礎技術研 P.94 究部門
2022C-001KOIZUMI	Development of a system for netron resonance transmission analysis using a laser driven neutron source	Mitsuo KOIZUMI	日本原子力研究開発機構 核不拡 散・核セキュリティ総合支援セン P.95 ター 技術開発推進室

磁化プラズマ中を伝播する無衝突衝撃波の生成実験 山崎了^{1,2},田中周太¹,佐藤雄飛¹,塩田珠里¹,大林花織¹,城所佑奈¹,鈴木俊輔¹,矢倉彰真¹,佐野孝好²,江頭俊輔², 前田亘佑²,鈴木悠斗²,花野正浩²,蔵満康浩³,南卓海³,境健太郎³,松清修一⁴,諌山翔伍⁴,森田太智⁴,高橋健太⁴, 東力也⁴,忍田昂太郎⁴,中山学⁴,前之園凱夫⁴,村本裕耶⁴,金定功樹⁴,竹崎太智⁵,小口拓哉⁵,松山隼⁵,重田宗明⁵, 富田健太郎⁶, Pan Yiming⁶,大西直文⁷,梅田隆行⁸,星野真弘⁹,大平豊⁹,石井彩子¹⁰,坂和洋一² 1)青山学院大学,2)大阪大学レーザー科学研究所,3)大阪大学工学研究科,4)九州大学,5)富山大学, 6)北海道大学,7)東北大学,8)名古屋大学,9)東京大学,10)山形大学

SUMMARY

超新星残骸などに存在する宇宙の低密度媒質中 の磁化無衝突衝撃波の生成実験を行った。ショッ ト前に窒素ガス 1 Torrを封入し、外部磁場をかけ、 アルミ・ターゲットに激光XII号HIPERレーザーを 照射した。外部磁場3.9 Tを印加したショットを16 回行うことに成功した。プラズマ自発光、トムソ ン散乱、B-dot計測などを行い、外部磁場なしの場 合や外部磁場の向きの違いによる計測結果の違い を認めた。特に、アルミプラズマと窒素プラズマ の境界面の不安定性の起こる場所が、磁場の極性 をかえることで反対になった(FIG)。このことは、 アルミプラズマがビアマン過程により磁化されて いることを示唆し、ビアマン過程が衝撃波生成に おいて一役を担っていることを示すものかもしれ ない。

Radiative shocks as star progenitors

Y. Benkadoum¹, B. Albertazzi¹, G. Rigon¹, Y. Sakawa², A. Dearling², F. Lefevre¹, M. Koenig¹

SUMMARY

The interaction of strong RS with structures and inhomogeneities of the ISM is a central problem in astrophysics. We performed a study on the effects of radiation when a RS interacts with an object mimicking a dense clump in the ISM.

The goal of the experiment was to study first the interaction of a radiative shock (RS) as a function of the density ratio between the obstacle and the shock (factor of 1000), second the modification of the RS structure with respect to the initial gas density. In the transverse direction to the propagation of the radiative shock, we implemented a large array of visible diagnostics to measure as much as possible variables. Both studies were successful, as shown in figure 1. For next experiment, we will combine RS and external magnetic field to be closer to the astrophysics conditions.

Fig. 1. On the left, an example of a comparison between the obstacle ablation due to radiation of the shock for a 150 mbar of xenon (green crosses), data from a 2D FLASH simulation (black squares) and our theoretical model (dotted colored curves) for different shock temperatures. Right picture is a typical example of result given by the streak camera of the shadowgraphy diagnostic. Long time evolution of magnetized plasma shock generated by high power laser S. Matsukiyo¹, S. Isayama¹, T. Morita¹, T. Takezaki², R. Yamazaki³, S. J. Tanaka³, Y. Kuramitsu⁴, K. Tomita⁵, T. Sano⁶, R. Higashi¹, K. Takahashi¹, K. Oshida¹, G. Nakayama¹, Y. Maezono¹, Y. Muramoto¹, K. Kanesada¹, T. Oguchi², H. Matsuyama², M. Shigeta², Y. Sato³, J. Shiota³, K. Obayashi³, Y. Kidokoro³, S. Suzuki³, S. Yakura³, T. Minami⁴, K. Sakai⁴, P. Yiming⁵, S. Egashira⁶, K. Maeda⁶, Y. Suzuki⁶, M. Hanano⁶, Y. Sakawa⁶

1) Kyushu University, 2) University of Toyama, 3) Aoyama Gakuin University, 4) Osaka University,

5) Hokkaido University, 6) Institute of Laser Engineering, Osaka University

SUMMARY

Long time evolution (> 100 ns) of a collisionless shock propagating in a magnetized nitrogen gas plasma is formed by irradiating an aluminum target plate surrounded by 5 Torr nitrogen gas with Gekko XII laser. We used a number of laser conditions with different pulse duration and laser energy to search preferential conditions for long time driving of a supercritical shock $(M_A > 3)$. We could drive a supercritical shock up to \sim 140 ns when a pulse duration is 5.2 ns and laser energy is 5.6 kJ (3.42E13 W/cm²). We could also capture shock propagation up to ~ 230 ns by making the size of magnetic coil large so that the field of view of optical measurements is expanded. We further observed that global profile of a shock after t > 100 ns varies depending on the laser energy. A collimated clump of the leading edge of the shock is seen for 3 beam shots. A blunt shock is formed for 6 beam shots. Spatial oscillation of shock surface is seen for 12 beam shots.

Demonstration of ultra-high intensity LFEX with Hyperbolic Plasma Mirror for generation of Relativistic Electromagnetic Shock and near-relativistic ion beams Morace¹, Y. Arikawa², Y. Sakawa¹, H. Chen², R. Wilson², P. McKenna², R. Gray³,

1) Institute of Laser Engineering, Japan, 2) Lawrence Livermore National Laboratory, US 3) University of Strathclyde,

SUMMARY

Achieving extreme laser intensities ($I > 5x10^{20} \text{ W/cm}^2$) on a kJ-class, picosecond laser system would open a new regime in laser plasma interaction, with applications to experimental astrophysics, ion-based Fast Ignition research and for the development of > 100 MeV/nucleon ion sources.

This experiment represents the first attempt at increasing the LFEX laser intensity using Ellipsoidal Plasma Mirrors provided by co-investigators at the University of Strathclyde.

Experimental results show that high intensity was achieved but no ions were generated due to LFEX uncompressed light irradiating the mirror and target before the main pulse.

We nevertheless generated ultra-relativistic electrons from (expanded) 1 um Al foil, indicating that high LFEX intensity was achieved with the Ellipsoidal Plasma Mirror.

(a) Schematic of the Ellipsoidal Plasma Mirror used in the experiment, (b) EPM and RCF stack mounted on the LFEX Laser right after shot (c) Ultra-relativistic electrons obtained in two shots and recorded on the Radio-Chromic Film stack.

天体現象に見られる弓状衝撃波の構造と磁気再結合の模擬実験 田中周太^{1,2},蔵満康浩²,境健太郎²,山崎了^{1,2},松清修一³,森田太智³,弘中陽一郎²,諌山翔伍³,安倍勇輝², 當真賢二⁴,松本仁⁵,庄田宗人⁶,佐藤雄飛¹,塩田珠理¹,大林花織¹,城所佑奈¹,鈴木俊輔¹,矢倉彰真¹,佐野 孝好²,江頭俊輔²,前田亘佑²,鈴木悠斗²,花野正浩²,南卓海²,倉本恭誓²,高橋健太³,東力也³,忍田昂太郎³, 中山学³,前之園凱夫³,村本裕耶³,金定功樹³,竹崎太智⁷,小口拓哉⁷,松山隼⁷,重田宗明⁷,富田健太郎⁸, Pan Yiming⁸,大西直文⁴,梅田隆行⁹,大平豊⁶,石井彩子¹⁰,坂和洋一² 1) 青山学院大学,2)大阪大学,3)九州大学,4)東北大学,5)慶応義塾大学, 2) 6)東京大学,7)富山大学,8)北海道大学,9)名古屋大学,9)山形大学

SUMMARY

図aにAlターゲットに激光XII号レーザーを照射す ることで出るアブレーションプラズマの噴き出す 先に棒状の障害物を設置し,超音速のプラズマ流 が作る弧状衝撃波の形状を観測する. Alターゲッ トの裏面に磁石があり,Alプラズマ磁化する(図b). 棒を回り込むプラズマ流が作る弧状衝撃波の時間 発展の計測結果が図c(0-5 ns),d(60-65 ns),e(140-145 ns)である. 図c-eでは左から右に向かってプラ ズマ流があるように回転している. この他にB-dot 計測による周辺の磁場の時間変化も計測している. ターゲット裏面の磁石の配位による衝撃波の形状 の違いや,磁場の時間発展の違いが観測された.

Experimental investigation on the magnetic reconnections driven by electron dynamics
N. Bolouki¹, K. Sakai², T. Minami², Y. Abe², F. Nikaido², T. Taguchi², K. Himeno², S. Suzuki², R. Matsuura²,
K. Kuramoto², T. Yasui², T. Tanaka², Y. Sakai², T. Pikuz², N. Ozaki², Y. Sakawa², M. Hanano², S. Fujioka², Y. Arikawa²,
A. Morace², W. Y. Woon³, C. M. Chu³, C. S. Jao³, Y. L. Liu⁴, Y. Fukuda⁵, T. Hayakawa⁵, M. Kanasaki⁶, T. Morita⁷,
Y. Muramoto⁷, T. Moritaka⁸, H. S. Kumar⁹, N. Ohnishi⁹, Y. Okada¹⁰, G. Gregori¹⁰, and Y. Kuramitsu² *1) Masaryk University, Czech Republic, 2) Osaka University, Japan, 3) National Central University, Taiwan, 4) National Cheng Kung University, Taiwan, 5) KPSI QST, Japan, 6) Kobe University, Japan, 7) Kyushu University, Japan, 8) NIFS, Japan, 9) Tohoku University, Japan, 10) University of Oxford, UK*

SUMMARY

We have been experimentally investigating the magnetic reconnections driven by electron dynamics. So far, we have reported formation of cusp and plasmoid, which propagates at the Alfven velocity defined by electron mass with global imaging of plasma structures. Using local diagnostics, we also clarified the pure electron outflows, magnetic field inversion, and whistler waves. The final piece to complete the experimental investigation of the magnetic reconnection in electron scale is the imaging of the global magnetic structure. The objective of this research is to establish magnetic field reconstruction using ion radiography using large-area suspended graphene (LSG), solid-state nuclear track detectors (SSNTD), and artificial intelligence. We show here the preliminary results demonstrating the waves in the laser-produced plasma.

FIG. (a) Mechanical drawing of the experimental setup. Three GXII beams (green) irradiate the Al planer target to produce a fast directional plasma flow, and one GXII beam from the top also irradiates the Al slab target on the bottom to create two-plasma interaction. LFEX laser (red) irradiates an LSG target with defocused intensity. The accelerated ions are detected with SSNTD. (b) Ion radiograph at 10 ns from GXII laser irradiation (partial image) shows wave-like structures.

Particle acceleration via magnetic reconnection using coil target

坂和洋一^A, 江頭俊輔^B, 前田亘佑^B, 鈴木悠斗^B, 花野正浩^B, Adam Dearling^C, Mima Bolouki^D, 前之園凱夫^E, 村本裕耶^E, 森田太智^E, 森高外征雄^F, 佐野孝好^A, 藤岡慎介^A, 蔵満康浩^G, 富田健太郎^H, 松清修一^E, 山崎了^I, Nigel Woolsey^C

- A) 大阪大学 レーザー科学研究所, B) 大阪大学 大学院理学研究科, C) University of York, UK,
- D) Masaryk University, Czeck Republic, E) 九州大学 総合理工学研究院, F) 核融合科学研究所,
 - G) 大阪大学 大学院工学研究科, H) 北海道大学 工学研究院, I) 青山学院大学 理工学研究科

1. 九州大学総合理工学研究院, 2. 大阪大学レーザー科学研究所

まとめ

本研究の目的は高エネルギー宇宙線の加速メカニ ズムの解明である。我々は磁化プラズマ中を対向伝 搬する2つの大振幅波動による粒子加速を、新しい高 効率な宇宙線加速機構の候補として提案している。 本年度は本加速機構で得られる粒子の最大エネル ギーと波の振幅の閾値を理論的に導出した。さらに、 粒子シミュレーションにより本加速機構が有効に働 くことを示し、粒子の最大エネルギーと波の振幅の 閾値は理論値と一致することを確かめた(右図)。 本研究成果はアストロフィジカルジャーナル1に掲載 された。

今後はモデルを多次元化し、さらに輻射の効果を 取り入れることによって粒子加速と高エネルギー天 体で見られる高輝度放射との関係を明らかにする。 また、高強度レーザーでの加速機構実証を想定した 粒子シミュレーションにより、最適な実験条件を明 例 ま 1 & yama, K. Takahashi, S. Matsukiyo and T. Sano, ApJ 964 68 (2023).

大型レーザーを用いた磁化無衝突衝撃波実験のためのパルス電磁石装置の開発

竹崎太智¹,小口拓哉¹,山崎了²,松清修一³,森田太智³,坂和洋一⁴ 1) 富山大学, 2) 青山学院大学, 3) 九州大学, 4) 大阪大学レーザー科学研究所

SUMMARY

大型レーザーを用いた磁化無衝突衝撃波実験の ためのパルス電磁石装置を開発した (図(a),(b))。衝 撃波の長時間発展を観測するため, 従来よりも印加 領域の広いコイル負荷を製作した。コイル負荷は 絶縁および放電時のローレンツ力による破損を防 ぐため, FRP樹脂材で作られた治具で固定される。 磁場コイルはヘルムホルツ型とし, コイル間のアル ミスペーサーの位置を可変とすることで, プラズマ 計測 (自発光, トムソン散乱 (TS)) の視野を提供す る。

パルス電源の充電電圧 1.6 kV, 容量 12 mF とし た結果, 最大 4 T, 半値幅 1.85 μs のパルス磁場を出 力し (図(c)), 半径 10 mm 以上の領域に均一な磁場 を提供した (図(d))。

開発した装置を激光XII号実験に使用し、レー ザー実験で10 shot 以上の繰り返し性を持つことを 確認した。また、レーザー生成プラズマに外部磁場 を印加したところ、プラズマ挙動の変化を観測した。

超高強度レーザープラズマ実験による宇宙ジェット伝搬における 流体不安定性成長の模擬実験の検討 水田晃1,蔵満康浩2,西本貴博2,坂和洋一3

1) 理化学研究所, 2) 大阪大学工学研究科, 3) 大阪大学レーザー科学研究所

中性子による新しい土壌水分計測システムの開発 徳本家康^{1,2},余語覚文²,有川安信²

1) 佐賀大学, 2) 大阪大学レーザー科学研究所

SUMMARY

中性子による新しい土壌水分計測システムの開 発のため、宇宙線土壌水分観測システム (COSMOS)の計測値と中性子バブル検出器 (BDTおよびBDS10、100、600、1000)の比較を 行った。圃場試験地(南阿蘇夜峯山)(FIG.a, b) では、熱外中性子数の経時変化を観測した*。計測 領域の中心地で中性子バブル検出器による計測を 試みた。中性子バブル検出器ではバブルがほとん ど検出されず、BDS1000においてもほとんど不検 出であった。これに対して、COSMOSの 熱外中性子数カウントは、1時間間隔計測および24 時間移動平均値において,およそ850~950で推移 した。この成果は、今後の検出器デバイスの開発 において重要な知見である。

今後は、宇宙から降り注ぐ熱外中性子数に焦点 を当てた計測において、より長い観測期間におけ る比較検討が考えられる。

*Tokumoto et al. (2022): Near-surface Soil Moisture Observation on the Hillslope using Cosmic-ray Neutrons: A Case Study of Landslide Warning System, WCSS, Glasgow.

(b) (a) **Google** Earth Fast neutron _____ Solar panel detector Q-DL-2100 2020 ZENRIN CR1000 IoT base unit 13 m Camera Cain gauge 1200 $N(\operatorname{counts} \operatorname{h}^{-1})$ 1100 1000 900 800 700 2019/12/1 FIG. 圃場における計測: (a) 研究 圃場, (b) COSMOS の計 測概略図, (c) COSMOSの計測値の例

Ion acceleration using collisionless shocks produced in nonequilibrium plasmas Y. Fukuda¹ and Y. Sakawa²

1) Kansai Photon Science Institute (KPSI), National Institutes for Quantum Science and Technology (QST), Japan, 2) Institute of Laser Engineering, Osaka University, Japan

SUMMARY

We have investigated collisionless shock ion acceleration (CSA) using a high-intensity ps-pulse laser system with a modest normalized vector potential [1]. In a near-critical density plasma that consists of multi-component ion species C_8H_7Cl , only protons are accelerated, which is clear evidence of CSA and agrees with the prediction by 2D PIC calculations. In a near-critical density multi-component proton and C^{6+} -ion plasma, it might be possible to control accelerated ions actively (proton-only or proton and C^{6+} -ion acceleration) by changing the drive-laser intensity in CSA. This work illustrates how laboratory studies of ion acceleration at collisionless shocks can be an important tool to under- stand some of the collisionless physics associated with space and astrophysical shocks.

[1] Y. Sakawa et al., submitted to Phys. Rev. Lett. (2023).

FIG. Raw data of TPS (a) without and (b) with the ablation laser. a_0 is 1.6 and 2.0 for (a) and (b), respectively. The target is a foil of C_8H_7Cl with a thickness of 1 µm. Whereas signals from protons and carbon ions appear when the drive laser alone is used, whilst only a proton signal is detected when the ablation laser is used.

高速電波バースト解明のためのコヒーレント放射条件と誘導放射条件の実験的検証に向けた理論 検討

木坂将大1,田中周太2,住友洋介3,坂和洋一4

1) 広島大学大学院先進理工系科学研究科, 2) 青山学院大学理工学部, 3) 日本大学量子化学研究所, 4) 大阪大学 レーザー科学研究所

SUMMARY

本研究は、「コヒーレント放射」や「誘導放射」 の物理機構の理解を目指した、レーザー実験による 検証に向けた理論研究である.本年度はコヒーレン ト放射が実現すると考えられている中性子星磁気 圏のプラズマの個数、エネルギー分布、磁化率を図 のように明らかにした.この結果をもとに、実験で 擬似的に再現可能なセットアップの検討を行った. コヒーレント放射の理解は謎の天体現象である高 速電波バーストの機構として有力で、その起源解明 や宇宙論などへの応用への寄与も期待できる.

Investigation of plasma instabilities in the collisionless shock foot region Y. Ohira¹, K.F.F. Law², S. Fujioka²

1) University of Tokyo, Japan, 2) Institute of Laser Engineering, Osaka University

SUMMARY

This research studied the evolution of plasma instabilities in collisionless plasma modeling the foot region in a collisionless shock by performing twodimensional full PIC simulations. We modified the initial momentum distribution of the protons in a uniform proton-electron plasma to investigate the effect of the return protons from the shock region on the plasma instabilities evolution. As shown in the figure, the electric energy density developed before 500 ω_{pe}^{-1} , as the signature of the initial electron heating by Buneman instability. Compared to the simulation case with return protons, in the case without return protons, the plasma instabilities following the Buneman instability take a longer time to grow and have not yet shown saturation within the simulation time. This result showed the change in plasma instability when the impulsive nature of reflected protons from shock region, which is observed by recent space observation, being taken into account.

FIG. Time development of electric energy density in PIC simulation. The black color represents the simulation with only reflected protons, and the red color represents the case with both reflected and return protons.

ディケイングショックによる相転移カイネティクスに関する実験的検討

知場一航¹,尾崎典雅^{1,2},片桐健登^{1,3},野中敬太¹,岩本良太¹,政岡豪流¹,佐野孝好²,兒玉了祐^{1,2} 1) 大阪大学大学院工学研究科,2) 大阪大学レーザー科学研究所,3)スタンフォード大学

ケイ酸塩の惑星内部における融解挙動の解明

佐藤友子1, 尾崎典雅2, 佐野孝好3, 兒玉了祐2,3

1) 広島大学大学院先進理工系科学研究科, 2) 大阪大学大学院工学研究科, 3) 大阪大学レーザー科学研究所

SUMMARY

岩石型惑星の主要構成物質であるケイ酸 塩の地球・惑星中心部に相当する超高圧・ 高温条件下における状態方程式や電気的性 質を調べるため、MgSiO₃組成の高密度相で あるブリッジマナイトを試料として減衰衝 撃圧縮下におけるVISAR・SOP・分光スペ クトル測定を実施した。分光スペクトルに 関しては、450nm-750nm範囲の広い波長範 囲での輻射スペクトルを測定することに成 功し、より正確な温度・放射率および電気 伝導度を算出できると期待される。固化す るとされる650GPa付近で、SOPには明瞭な 変化が観察されなかったが、輻射スペクト ルと反射率についてより詳細な解析を試み たい。

極超高速衝突シミュレーション実験による固体微粒子捕集機構の基礎開発(3) 矢野創^{1,5},長友英夫²,弘中陽一郎²,佐野孝好²,田端誠³,平井隆之⁴,中澤淳一郎⁵

宇宙航空研究開発機構宇宙科学研究所,2)大阪大学レーザー科学研究所,
 3)千葉大学,4)千葉工業大学,5)総合研究大学院大学

Development of electron beam control scheme using kilo-tesla-class self-generated-resistive magnetic fields T. Johzaki^{1,2}, S. Fujioka², K. Yoshitake¹, H. Nagatomo², R. Takizawa², J.-Y. Dun², H. Morita^{2,3}, T. Maekawa², T. Tsuido², K. F. F. Law², M. Takemura², S. Guo², B. Zhu²

1) Hiroshima University, Japan, 2) Osaka University, Japan, 3) Utsunomiya University

SUMMARY

In the present research, taking advantage of kJ-class multi-picoseconds LFEX laser, we aimed to demonstrate the guiding scheme of relativistic electron beam using the resistive magnetic field generated around the material interface by the beam current.

We conducted experiments for 3 types of target;

- (1) guiding material: Ni and surrounding material: CH
- (2) guiding material: CH and surrounding material: Ni
- (3) CH mono-material

In the experiments we used plasma mirrors, which resulted in high contrast ratio but also reduced the laser intensity. As the results, the beam guiding was observed for case (2), which agrees with the guiding performance predicted for the low intensity case in the preceding numerical simulation[1]. In addition, the result indicating laser focusing effect by the guiding cone under the high contrast condition was observed.

[1] T. Johzaki et al., Phys. Plasmas 29, (2022) 112707.

Data Analysis of Low-Beta Reconnection Driven by Laser-Powered Capacitor Coils H. Ji^{1,2}, S. Fujioka³, S. Zhang¹, L. Gao², A. Chien¹, R. Takizawa³, Y. Sakawa³, T. Morita⁴

1) Princeton University, USA, 2) Princeton Plasma Physics Laboratory, USA, 3) Osaka University, Japan, 4) Kyushu University, Japan

SUMMARY

Magnetic reconnection is ubiquitous in space and astrophysical plasmas, rapidly converting magnetic field energy into plasma particles. As part of this collaborative program, we have published results from our previous joint experiments to study particle acceleration by magnetic reconnection at low-beta driven by capacitor coils [A. Chien et al., "Non-thermal *electron acceleration from magnetically drive* reconnection in a laboratory plasma", Nature Physics 19, 254-262 (2023)]. Reconnection electric field is identified to be responsible to generate the detected energetic electrons. These results are highly relevant to the observations of high-energy electrons throughout the Universe. This work has also established a novel platform to study various proposed mechanisms of particle acceleration by magnetic reconnection, beyond capabilities of the traditional experiments of magnetized plasmas.

FIG. Experimental platform to detect energetic electrons by reconnection driven magnetically via capacitor coils. Electric current are induced by irradiated by lasers on the back plate relative to the front plate while multiple channels of particle spectrometers detect energized electrons from reconnection.

超高強度レーザーによる高電離重金属プラズマの形成過程の解明

M. Nishiuchi¹, L. Chang¹ N. Dover², K. Kondo¹, K. Kon¹, H. Sasaki¹, J. Koga¹, M. Hata¹, N. Iwata³, K. Sugimoto³, Y. Takagi³, and Y. Sentoku³

1) Kansai Photon Science Institute, QST, 2) Imperial College London, 3) Institute of Laser Engineering, Osaka Univ.

SUMMARY 25nm ペタワット級の高強度レーザーを用いれば、 Target Shot-f 600 フェムト秒からピコ秒という短時間に鉄や銀など Magnet の重金属を超高温に加熱でき、内部においては重 Al filter 金属の多価電離が進行する。高強度レーザーによ 300 Ge crvstal 335 w/o ₽M る超高温高電離プラズマ形成は、強い非平衡状態 Rotation pump line における電離や高輝度X線・ガンマ線輻射を伴う 複雑過程であり、十分な理解は得られていない。 Image plate 本研究では、量子科学技術研究開発機構関西光科 100nm 50nm 学研究所のJ-KAREN-Pレーザーを金の薄膜に照射 df1 df2 df2 し、生成される高電離高エネルギー密度プラズマ Au 51+ Ne-like の温度をX線計測により計測した。計測されたX線 Au 52+ Co-like のスペクトル (2~4 keVの領域) には、ターゲッ ト厚み、レーザーのコントラストによる明らかな 違いを認めた。今後これらのスペクトルの違いを 説明するモデルを構築し、超高強度レーザーによ る重金属プラズマの加熱に関する理解を進める。 高電離・高エネルギー密度プラズマの理解は、イ 実験セットアップ(左上)。異なる厚みの薄膜によって オンビーム源への応用や核物理研究、オパシティ 取得されたX線スペクトル(生データ)。プラズマミ など物性研究への展開が期待できる。 ラーあり(赤)、プラズマミラーなし(青)でスペクト ルに有意な差がみられる。

超高強度レーザーと 田 <i>日本原子力研究開発機構</i>	高密度プラズマの相互作用 ロ 俊弘 <i>費 敦賀総合研究開発センター</i>
SUMMARY 2022年度は2021年度同様,諸事情のため2020 年度から長友先生と行っている誘導ラマン散乱の 解析の続きがあまりできなかった.そこで,以前 より行っている三角形メッシュを利用した放電プ ラズマ解析用の粒子コードを用いて,負バイアス を電極に加えたシースプラズマ中に電子を注入す ることで,電極とプラズマの電位差を増大させ, 注入電子のエネルギーを増加させることが可能か 否かを調べた.図1に結果を示す. この解析は,このコードの主目的であるダスト プラズマに対して,電子注入による加熱で浮遊ダ ストの組成改質が可能かを調べるために行った. 現在このコードはダストプラズマ解析用である が,レーザー加工など高強度レーザーと物質の相 互作用の解析において,チャンバー内部の電極構 造をリアルに取り入れた解析に発展させることが 可能なので,その方面へのインパクトは大きいと 考えている.	100 V [V] nt= 150000 t [µs]= 15.000 100 V [V] nt= 157000 t [µs]= 15.700 50

Laser driven polarized neutron generation and proof of principle of high magnetic field measurement

Y. Arikawa¹, A. Morace¹, A. Yogo¹, Z. Lan¹, T. Wei¹, S. Matsumoto¹, K. Miyanishi², T. Sato³, T. Hayakawa⁴ 1) Institute of Laser Engineering, Osaka University, 2) Graduate School of Engineering Science, 3) Research Center for Nuclear Physics, Osaka University, 4) National Institutes for Quantum Science and Technology, Kansai Photon Science Institute

Summary

This study is aiming for exploring a new concept of neutron diffractometry by laser driven strong magnetic field. Neutron diffracts by a divergence of magnetic field toward two directions dependent on neutron polarizations. Then neutron beam is split into two polarized neutron beams as described in Fig1. Neutron diffraction angle is dependent on the neutron velocity and dB/dx \times L. Since high power laser can generate extremely large dB/dx, neutron diffraction is able to be observable when a well point source and low energy neutron probe is prepared. Unfortunately, 2022's experiment planed at 2022-August was postponed to 2022-Dec, but it was re-postponed to 2023-Sept due to LFEX machine trouble.

Polarized neutron

Figure 1 Neutron diffractometry schematics

In spite of the machine trouble, we had developed a low energy neutron beam profiler, which consists of Li-6 glass scintillator thin plate attached to the CCD surface. Since CCD has an issue for EM pulse noise generated by LFEX, the scinti-CCD is powered by a battery and entire system is enclosed in a metal EM pulse shield chamber. The system was tested at ride-along with shot of other LFEX shots and we confirmed it is capable to measure low energy neutrons at LFEX shot. Figure 2 is a photo of the scintillator CCD system.

Li-6 glass scintillator (low energy neutron sensitive),

plastic scintillator (fast neutron sensitive)

Figure 2. A scintillator plates attached CCD camera for measuring neutron diffraction at LFEX. The system was tested at 15-cm away from target at LFEX shot and was demonstrated.

レーザー駆動中性子源を用いた中性子共鳴透過分析技術に適用可能な測定システムの開発研究会 小泉光生¹, 弘中浩太¹, 李在洪¹, 余語覚文², 有川安信², 安部勇輝², 中井光男²

1)日本原子力研究開発機構 核不拡散・核セキュリティ総合支援センター,2)大阪大学レーザー科学研究所・光 量子ビーム科学研究部門

SUMMARY

本研究では、レーザー駆動中性子源(LDNS)を用 いた中性子共鳴透過分析(NRTA)技術開発の一環と して、大阪大学の超高強度レーザーLFEXから発生 したパルス中性子に適用できる中性子モデレータ、 中性子検出器及び飛行時間測定・分析システムの 開発を進めており、開発に関する打ち合わせ、議 論、情報交換などを行った。

議論などを基に開発したNRTAシステムおよび 超高強度レーザーLFEXを用いて中性子透過実験を 行い、中性子共鳴吸収スペクトル(右図)を取得 した。図の通り、試料による中性子共鳴反応に起 因する中性子透過率の減少が確認できた。本結果 は、中性子計数法を用いたNRTAシステムにより 核種の判別に成功したことを実験的に示すもので ある。

本実験の分析結果について、大阪大学が主体と なって実施した別の実験の結果と比較、照合し、 妥当性の検証を行った。本成果は論文へまとめ、 令和5年度中に発表する予定である。

Laser-driven Cold/Thermal Neutron: Activation and Radiography Applications

Seyed Reza Mirfayzi,⁴ Tianyun Wei,¹ Takehito Hayakawa,^{1,2} Yasunobu Arikawa,¹ Yuki Abe,^{1,3} Maiko Nakanishi,¹ Zechen Lan,¹ Takato Mori,¹ Kunioki Mima,¹ Shinsuke Fujioka,¹ Masakatsu Murakami,¹ Mitsuo Nakai,¹ Hiroaki Nishimura,^{1,5} Satyabrata Kar,⁶ and Ryosuke Kodama¹, and Akifumi Yogo,¹ ¹ILE, Osaka University, ²QST, ³Graduate School of Engineering, Osaka University, ⁴Tokamak Energy Ltd, UK, ⁵Fukui University of Technology, ⁶Queen's University Belfast, UK,

SUMMARY

The thermal neutrons are powerful probes to inspect water or high-pressure hydrogen gas because of their large scattering cross-sections with protons. Laserdriven neutron source, which is able to simultaneously emit different types of radiations such as x rays, can be used for neutron and x-ray radiography in the same laser shot. In this paper, we report the demonstration of non-destructive inspection for H2O contained within a stainless steel pipe using a laser-driven thermal neutron source, where water and stainless containers are detected by neutrons and x rays, respectively. The simulation result indicates that this method can also provide the capability to measure the hydrogen density in high-pressure hydrogen gas in metal containers.

T. Wei et al., AIP Advances **12**, 045220 (2022); doi: 10.1063/5.0088997

(Left) A radiography experimental setup.

(Right) (a) Picture of the radiography samples of the stainless steel pipes, of which one is full with H2O and the other is opened in a vacuum chamber. The Dy plate and IP are placed under the two pipes. (b) Measured neutron radiograph. (d) X-ray image. (d) Transmittance for neutron (red) and x ray (blue) along the horizontal position obtained from the images of (c) and (d).

Bright laser-driven x-rays and neutron source in liquid micro-cluster target via strong shock waves *Krishnamurthy Manchikanti*,¹ Seyed Reza Mirfayzi,² Tianyun Wei,³ Alessio Morace,³ Yasunobu Arikawa,³ Zechen Lan,¹ *Kohei Yamanoi*,³ Kunioki Mima,³ Ryosuke Kodama,³ and Akifumi Yogo,³

¹Tata Institute of Technology, India, ²Tokamak Energy Ltd, UK, ³ILE, Osaka University

SUMMARY

Here, we report an in-direct method which can obtain quasi-mono energetic deuteron beam easily in experiments. The experiments are conducted at ILE, Osaka University.

A primary target (Al) is focused by LFEX laser, electrons and protons are accelerated from it. A secondary target (heavy water capsule) is set at the normal direction after the primary target.

By optimizing the experiment conditions such as the distance of the 2 targets and the size of the heavy water capsule, deuterons over 10MeV with energy width less than 1MeV can be accelerated from the capsule.

The photo (a) and the picture (b) of a secondary target (heavy water capsule). (c)A setup of indirect laser shot experiment. (d) The energy spectra of mono-energetic deuterons for different diameter of the heavy water capsule. 高繰り返しレーザー駆動量子ビーム源のための連続供給重水ターゲットの開発 東口武史¹,空本龍弥¹,久米真樹¹,中山勇冬¹,森田大樹¹,安部勇輝²,藤岡慎介³ 1) 宇都宮大学,2) 大阪大学大学院工学研究科,2) 大阪大学レーザー科学研究所

SUMMARY

半導体リソグラフィー露光用極端紫外 (EUV) 光 源やセキュリティー分野で注目されている中性子 源は基礎研究にとどまらず産業応用として展開す る重要な応用であるが,高いスループットのため, 高い繰り返し動作を要する.レーザー生成プラズ マでは,レーザーには高繰り返し動作,ターゲッ トの高速連続供給技術が必要である.そこで,高 繰り返しで動作できる連続供給ターゲットとして の重水ターゲットを開発した.

現在,大気中および真空中での水ジェット噴出 試験と安定度を確認している.また,ジェット径 をさらに細くしたり,円柱状ジェット以外のター ゲットを噴出するノズル製作を進めている.

本研究により,連続供給重水ターゲットにより コンパクトな高繰り返しレーザー駆動中性子源が 実現される.また,溶液にすることにより,各種 元素由来の量子ビームを発生でき,適用範囲を拡 張することができる.

液体ジェットターゲットを用いた高繰り返しレーザー粒子加速に関する研究 安部勇輝^{1,2},藤岡慎介²,東口武史³,蔵満康浩^{1,2},羽原英明^{1,2},南卓海¹,松浦亮大¹,小田和昌¹,鈴木蒼 一郎1,小川純里3,中山勇冬3,石川直輝3,久米直樹3,新沼大登3,平尾祥太郎3, 栗原諒3,小柳優奈3 1) 大阪大学工学研究科, 2) 大阪大学レーザー科学研究所, 3) 宇都宮大学工学部 **SUMMARY** Z-ステージ (SIGMA KOKI, TAR-34803L) (a) ードルバルブ (b) 本研究は高繰り返しレーザーを用いた粒子加速 VE-50 7 3 2 42 XY-ステージ — IGMA KOKL TAS-2060 とその応用研究を推進するためのターゲット開発 ベローズ を目的とし、液体薄膜の連続供給技術の開発を ねじ棒固定具 行った. 昨年度までに液体ジェット供給システム M6ねじ棒 (4本) の初号機(図(a))が完成し、今年度はその動作試 ラインフィルタ(2個 験とレーザーとの同期,照射位置調整の方法など (結金属製エレメント) の検討を行った(図(b)).最も単純な円柱形 ノズル (京都タカオシン) ジェットでは、直径500 µmから30 µmまでの水柱 の生成に成功した.また、今年度はこれに加えて 重水加速に伴う中性子発生 [Y. Abe et al., APL 111, (c) 233506 (2017)]を想定した円筒ジェットの生成にも 着手し、ノズルの試作とジェット生成の条件出し を行った.実験と並行して,円柱及び円筒ジェッ トにおけるレーザー相互作用とプラズマダイナミ クスを2次元粒子コード(EPOCH-2D)を用いて計 算し、 電子及びイオンの加速効率や到達エネル FIG. (a) 液体ジェット装置の構成図, (b) YAGレーザー照 ギーの評価を行った(図(c)). 今年度の研究で, 射時のプラズマ発光, (c) 円筒ノズル使用時のプラズマ 液体ジェットを安定供給するための技術的な知見 ダイナミクスの計算結果(2D-PICシミュレーション, が蓄積され、レーザーを用いた本格的なプラズマ EPOCH-2D) 実験に移行するための基礎固めが概ね完了した.

超高強度レーザーイオン加速におけるイオン化の物理とその制御 畑昌育¹, 佐野孝好², 岩田夏弥², 千徳靖彦² 1) 量子科学技術研究開発機構, 2) 大阪大学レーザー科学研究所

高効率中性子発生のための固体重水素薄膜生成手法の開発

研究代表者:岩本 晃史 受入教員:余語 覚文* 核融合科学研究所、*大阪大学レーザー科学研究所

SUMMARY

純粋水素(あるいは重水素)薄膜をクライオ冷 却によって実現し、高効率の陽子(重陽子)加速 を実証する。2022年度はさらに装置を改良し、固 体水素の成膜に成功すると共に、膜厚の制御を可 能とした。ターゲットの上下と共にクライオ冷凍 機も上下する構造として冷凍機とターゲット間の 熱伝達距離を短縮、固体水素が生成できる温度(約 7 K)を定常的に達成した。 即ち、水素より融点の 高い固体重水素も生成可能であることを意味する。 また、薄膜生成部をスリットからオリフィス(ピ ンホール)に変更、銅基板の厚さと同じ厚さの固 体水素を生成できた(図1)。銅基板の厚さを変え る(50-500 µm)ことで膜厚の制御が可能となった。 本テーマの固体水素装置の開発を始めてから3年 以上を費やしてきたが、参画する学生の努力に よって、これまでで最高傑作といえる装置が完成

した。装置を仕上げて、マシンタイムにおいて

LFEX照射実験につなげたいと考える。

る様子。温度が十分に低下したため、1時間以上真空で 保持できた。直径1 mmのオリフィス(ピンホール)部 分のみに固体水素が成膜された。また、薄膜の厚さは基 板厚さ(写真は500µm)以下となる。基板は厚さを変え られるように交換可能とした。

レーザー駆動中性子による恒星内元素合成の研究 早川岳人¹,余語覚文²,有川安信², Lan Zechen², Wei Tianyun² 1) 量子科学技術研究開発機構, 2) 大阪大学レーザー科学研究所 Intermediate states **SUMMARY** Excitation Deexcitation ¹⁷⁶Luは約3.7×10¹⁰年の半減期で¹⁷⁶Hfにβ崩壊する Neutron 宇宙核時計として知られている。隕石研究で、一 Isomer 部の隕石で半減期が短くなる現象が発見され、太 Ground state 176 U 陽系形成の初期において未解明の宇宙的現象が発 β-decay 0.34% 生したと考えられる。我々は高エネルギー宇宙線 Q_β= 1192.8 keV 8+ QFC106.2 keV の2次中性子による加速崩壊を提案している。そこ で、本研究では過去に測定された実験データの 99.66% 401.0 keV サーベイと統計モデルによる理論計算を行った。 0.329 6^{+} その結果、理論値と実験値が大きく違い、実験の 必要性が判明した。また、宇宙線による中性子生 306.8 ke\ 94 成をシミュレーション計算した。 201.8 ke\ 86 – 88.3 ke∖ 13.3 176**Hf** FIG. 高エネルギー宇宙線の核破砕反応等で生成された 中性子による宇核核時計¹⁷⁶Luの加速崩壊のメカニズム の概念図。基底状態から中性子の非弾性散乱によってア イソマーに遷移し続けて役3.7時間の半減期でB崩壊する。 **Tailoring of Relativistic Laser-Plasma Interactions in Multi-Pico-Second Time Scale** S. Fujioka¹, T. Tsuido¹, T. Maekawa¹, J. –Y. Dun¹, R. Takizawa¹, K. F. F. Law¹, Y. Sentoku¹, N. Iwata¹, A. Yogo¹, A. Morace¹, Y. Arikawa¹, H. Morita², T. Johzaki³

1) Osaka University, Japan, 2) Utsunomiya University, 3) Hiroshima University, Japan

SUMMARY

Multi-picosecond laser-plasma interactions reveal different characteristics from those of sub-pico-second lasers. This study performed experiments using a highcontrast LFEX laser with a plasma mirror. Measuments were compared between coincidental irradiation of LFEX laser pulses of 1.5 ps full width at half maximum and stacked pulses of 1.5 ps with a 1.5 ps of delay between pulses, namely 6.0 ps (actuarily 5.2 ps). The energy distribution of fast electrons generated by laserplasma interaction was measured using an electron spectrometer and a hard X-ray spectrometer. The target material was a flat plate of copper oleate, and the propagation of fast electrons was visualized by imaging Cu-Ka emission from its side using a monochrome x-ray camera. Plasma heating due to laser-plasma interaction was detected using a multi-pinhole camera and a Fresnel zone plate. The data are currently being analyzed, but by extending the pulse width while keeping the total energy constant, the average energy of the fast electrons increases, and the divergence angle widens. The temperature at the plasma surface tends to remain unchanged.

Revisit of the ablation scaling with high power laser irradiation

1)重森啓介, 1)井手坂朋幸, 1)川崎昂輝, 1)田中大裕, 1)弘中陽一郎, 尾崎典雅, 1,2)兒玉了祐, 1)瀧澤龍之介, 1)藤岡慎介, 1)余語覚文, 3) D. Batani, 3) Ph. Nicolai, 4) G. Cristoforetti, 4) P. Koester, 4) L.A. Gizzi

1) 阪大レーザー研, 2) 阪大院工, 3) ボルドー大CELIA, 4) INO-CNR

SUMMARY

ハイパワーレーザーアブレーションのスケーリ ングに関しては、電子熱伝導をエネルギー輸送体 系とした定常アブレーションモデルが基本となっ ているが, 高強度・長波長レーザー照射条件下で 起こるレーザープラズマ相互作用による高速電子, 高原子番号物質照射条件下によるX線輻射により, このスケーリングが成立しない状況となる.本研 究では、これらのメカニズムにフォーカスし、ア ブレーションのパラメータ (圧力・質量噴出率) とこれを司る高速電子や輻射のパラメータの両方 を複数の計測器で観測し、その関係性を探る、本 年度はレーザープラズマ相互作用による高速電子 の効果に着目し、プラスチック系材料の水素含有 率依存性によるアブレーション圧力の変化を観測 した、実験より、水素含有率が多くなるほどレー ザープラズマ不安定性(および高速電子の発生) が顕著となり、これがアブレーション圧力の低減 に関係していることが明らかになった.

Dependence of Richtmyer-Meshkov Instability growth on gas compressibility T. Sano¹, C. Matsuoka², and F. Cobos-Campos³

 Institute of Laser Engineering, Osaka University, Suita, Osaka 565-0871, Japan, 2) Graduate School of Engineering, Osaka City University, Sugimoto, Sumiyoshi, Osaka 558-8585, Japan, 3) ETSI Industriales, Instituto de Investigaciones Energéticas and CYTEMA, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain.

SUMMARY

We have continued the study of the dependence of the growth velocity of Richtmyer-Meshkov Instability (RMI) on the gas compressibility. Since an important change in the behavior of the growth rate as a function the ratio of the specific heats of the gases (we asume ideal gas model) was observed [2021B2-018], we have calculated the physical limits when γ_a or γ_b tend to unity and infinity.

Especial attention requires the case when $\gamma_a = \gamma_b \rightarrow 1$ because it would bring the possibility to characterize new freeze-out, or at least low-growth, regimes for very intense shocks as those used in Inertial Confinement Fusion (ICF) configurations.

[1] J. G. Wouchuk, Phys. Rev. E 63, 056303 (2001).

FIG. Dependence of the linear asymptotic growth velocity (v_{xi}^{inf}) as a function of the isentropic exponent of the gas of the transmitted side, γ_a , for an incident shock Mach number $M_i = 10$. The rest of the pre-shock parameters are $\gamma_b = 3$ and a density ratio across the contact surface $R_0 = \rho_1/\rho_2 = 1,5$ (therefore a shock is reflected back). The dashed line correspond to the physical limit when $\gamma_a \gg 1$ and the coefficients *d* are calculated from Wouchuk-Nishihara model [1].

フェムト秒X線分光計測による高強度レーザー生成プラズマの過渡的特性の解明

犬伏雄一1, 籔内俊毅1, 千徳靖彦2

1) 高輝度光科学研究センター, 2) 大阪大学レーザー科学研究所

Study of isochoric heating physics driven by intense laser using XFEL Y. Sentoku¹, H. Sawada2, N. Iwata¹, and T. Sano¹

1) Institute of Laser Engineering, Osaka Univ.,2) University of Nevada, Reno

SUMMARY

We show spatiotemporally resolved characterization of a solid copper foil heated by optical laser-driven relativistic electrons by using femtosecond x-ray free electron laser (XFEL) pulses. 2D x-ray transmission imaging enabled visualization of the electron propagation within the solid foil and inference of an electron temperature range from x-ray images obtained by varying XFEL's photon energies near the Cu K-edge. The temporal evolution of the measured electronimpacted area agrees with simulated charge states rather than electron temperatures, suggesting that the propagating relativistic electrons primarily ionize the solid target by electron impact ionization without raising the temperature through collisions. Our results demonstrate the creation of non-equilibrium Fermi degenerate plasmas by ionizing a solid metal foil with laser-driven relativistic electrons.

Result had been published as DOI: 10.1063/5.0130953

FIG. The electron temperature and density space for isochorically heated non-equilibrium matter (a constant ion density and cold ion temperature). The warm dense matter regime is loosely defined in the range of $\Gamma \sim 1$ and $\Theta \sim 1$. The trajectories in red and purple lines represent the PIC simulations at different radial distances up to ~1.4 ps.

Developing a photon scattering model in non-thermal high energy density plasmas in PICLS code Y. Sentoku¹, T. Sano¹, E. d'Humires²

1) Institute of Laser Engineering, Osaka University, Japan, 2) University of Bordeaux, France

SUMMARY

In this research, we developed new physical models and simulation techniques to expand the scope of application of a laser-plasma simulation code, PICLS, and improved the accuracy of the simulation. This year we had the monthly Zoom meeting (Japan 6pm -France 9am) to discuss about the photon emission physics from a relativistic laser light which propagates in near critical density plasmas. Several radiation discussed, e.g., bremsstrahlung, processes are synchrotron, and radiative decay. We identify the dominant process would be the synchrotron emission when the laser intensity exceeds 1022 W/cm2. Copious gamma-rays could be a source of linear Breit-Wheeler pair productions. We discuss about how to implement the BW model in the radiation transport module.

FIG. The electron temperature and density space for isochorically heated non-equilibrium matter (a constant ion density and cold ion temperature). The warm dense matter regime is loosely defined in the range of $\Gamma \sim 1$ and $\Theta \sim 1$. The trajectories in red and purple lines represent the PIC simulations at different radial distances up to ~1.4 ps.

Theoretical study on particle acceleration in high energy density plasmas created by kJ class ultraintense lasers

N. Iwata^{1,2}, A. J. Kemp³, S. C. Wilks³, and Y. Sentoku¹

1) Institute of Laser Engineering, Osaka Univ., 2) Institute for Advanced Co-Creation Studies, Osaka Univ.,

3) Lawrence Livermore National Laboratory, USA

SUMMARY

Kilojoule-class petawatt lasers, having relativistic intensities and picosecond (ps) pulse durations, can generate MeV ion beams with a high energy conversion efficiency from laser to ions, typically about several percent. We here study the underlying physics leading to such an efficient ion acceleration from a thin foil plasma theoretically and numerically using particle-incell (PIC) simulations. The large spot size of the kJ lasers is a key to confine fast electrons in the spot area by a stochastic process. Due to the confinement effect, both the number and the average energy of fast electrons increase temporally in the expanding foil plasma under a continuous laser light irradiation on a several ps time scale, resulting a highly-efficient ion acceleration. This study can be a basis for kJ laser applications such as high flux ion beam generation for plasma diagnostics, medical applications, and plasma heating for laser fusion.

FIG. 1 2D particle-in-cell simulation for a kJ laser-driven target-normal-sheath-acceleration of ions. A 100 µm spot laser with the intensity $3 \times 10^{18} \text{W/cm}^2$ irradiated continuously onto a 2.5 µm-thick solid density foil plasma. (a) Laser field energy density, (b) sheath electric field, and (c) azimuthal magnetic field. In this spatio-temporal scale, stochastic behavior of fast electrons is important in determining the ion dynamics.

対向照射レーザーを用いた電磁場伝搬吸収とプラズマ加熱の検証 森芳孝¹、北川米喜¹、佐野孝好²、千徳靖彦²、岩田夏弥^{2,3} 1) 光産業創成大, 2) 大阪大学レーザー科学研究所, 3) 大阪大学高等共創研究院

SUMMARY

ピーク出力数TW級超短パルスレーザーの照射配 位、偏光、パルス幅を制御し、非相対論から相対 論領域における電磁波の伝搬・吸収の検証を行う ことを最終目的としている。昨年度までに、梯子 型ワイヤターゲットの自動アライメントシステム を整備した。ターゲットは、直径50µmのチタン線 である。自動アライメントシステムは、ターゲッ ト位置を2台のCMOSカメラで監視し、XYステー ジで、ワイヤ位置をレーザー照射位置へ移動させ る機構である。今年度は、制御系のソフトウェア をMatlabに統一し、制御性を高めた。その結果、 本システムにより、直径50µmのワイヤ線を照射位 置10µm以内に3.5秒以内で連続自動供給すること が可能となった。0.3Hzでの動作が可能である。本 システムにより実験の効率化が期待される。

カメラA カメラB FIG. (上左)連続ワイヤ供給装置 (上左)ターゲットワイ ヤアライメントシステム(下)レーザー照射の様子 研究協力者:太田、雑賀、梶村(明石高専)

2022B2-022MORI

マルチピコ秒相対論的レーザーによるポンデロモーティブエネルギーを超える電子の発生機構 東直樹 北海道大学大学院工学研究院

SUMMARY

ピコ秒以上のプラズマ粒子シミュレーションに よって、超ポンデロモーティブエネルギー電子の 生成が増加から減少に転じる可能性が示唆された が、その機構は未だ明らかでない。我々は先行研 究のアイデアを組み合わせ、「レーザー照射中、 電子の後方噴出が停止するほど急峻な密度勾配が 形成される」という仮説を立てた。この仮説をも とに、後方噴出の停止に伴い、超ポンデロモー ティブエネルギー電子が減少に転じる条件を示す 理論モデルの構築を試み、モデルの妥当性をプラ ズマ粒子シミュレーションによって検証を行なっ ている。構築するモデルによる理論的な予測は、 電子ビーム加熱の最適化への応用が期待できる。

Development of broadband antireflection structure in THz region 武田有真¹,長縄裕大¹,三浦悠杜¹,小野晋吾¹, Verdad C. Agulto²,中島誠² *1) 名古屋工業大学,2) 大阪大学レーザー科学研究所*

SUMMARY

ZnO単結晶基板上に超短パルスレーザー加工に よって微細周期溝構造(周期:50µm、アスペクト 比:3)を作製し、さらに大気中でのアニール処理 を施したサンプルに対して、テラヘルツ領域にお ける透過および反射率の偏波依存特性を評価した。 その結果、反射率低減効果の確認に加え、偏波に よって反射率と透過率の制御が可能であることを 示した。これにより、波長以下の微細構造による 屈折率制御が、モスアイ構造だけでなく、偏光 ビームスプリッタ、波長板などの光学素子に応用 可能であることを実証できた。

また、他のテラヘルツ帯における光学材料でも 同様の微細構造を作製するため、GaNに対する レーザー加工特性の調査を進めた。図のように加 工痕のSEM及びCL測定から、欠陥・不純物の形成 過程を部分的に明らかにすることができた。この 結果をもとに、GaN単結晶基板への微小周期溝構 造形成を行い、透過、反射特性を進めることで、 テラヘルツ帯におけるモスアイ構造を含む光学素 子開発が期待できる。

有機半導体材料によるテラヘルツ高速スイッチング 松井龍之介¹, 栃原隆太¹, V.C. Agulto², 中嶋誠² 1) 三重大学, 2) 大阪大学レーザー科学研究所 **SUMMARY** $\frac{\int \left|\tilde{E}_{sample}(\omega)\right|^2 d\omega}{\int \left|\tilde{E}_{reference}(\omega)\right|^2 d\omega}$ 真空蒸着法により金薄膜を成膜する場合、連続 膜を形成できないほどの蒸着開始直後においては 金はアイランドを形成し電気伝導を示さない。一 1.0 8 With PCBM 方で、有機半導体PCBM薄膜上に金を蒸着すると、 Without PCBM 0.8 パーコレーション閾値に至る前の極微量の蒸着時 0 においても電気伝導度の非線形的な増大が見られ **Relative transmission** 0.6 ることが報告されている。本研究では、このよう な有機半導体と金属ナノ粒子の複合系において見 0.4 られる特異な電気伝導特性を活用した新規なテラ ヘルツ高速スイッチング素子の創出を検討してい 0.2 る。PCBMを成膜あるいは成膜していない高抵抗 シリコン基板に同条件で金を蒸着した試料のテラ ヘルツ透過率を比較したところ、PCBMを成膜し 0.0 5 10 15 20 ていない試料ではテラヘルツ透過に変化が見られ d[nm] ないほどの極微量の蒸着量であっても、PCBMを FIG. PCBMを成膜(○) あるいは成膜していない(□) 成膜した試料では顕著なテラヘルツ透過の減少が 高抵抗シリコン基板に金薄膜を蒸着した試料のテラヘル 見られた(右図)。そのような差異は複素導電率 の解析結果にも現れており、特異な電子状態の発 ツ透過率の金蒸着膜厚依存性 現を示唆する結果と考える。

Smith-Purcell radiation emitted from a femtosecond electron bunch 淺川誠¹, 中嶋誠² *1) 関西大学大学, 2) 大阪大学レーザー科学研究所*

SUMMARY

金属回折格子と電子バンチの相互作用に基づく スミス・パーセル放射光源の放射効率を向上する ためにシート電子バンチの生成を試みた.シート 電子バンチは光電陰極に、シリンドリカルレンズ を用いて長軸半径6 mm、短軸半径0.14 mmの楕円 に集光した100 fsレーザーを照射することにより生 成した.シート電子バンチの中心部はレーザー照 射スポットの短軸方向に大きな発散角を持つこと がわかった.また、同じ面積の円形レーザース ポットから生成する電子バンチと比べ、シート電 子バンチの正味の発散角は小さかった.この実験 結果はシート電子バンチのエミッタンスが円形電 子バンチと比べ小さいことを示唆している.

またGoogleが公開しているAIであるTensorflow を利用した,電子バンチプロファイルの評価シス テムおよびレーザーアライメント強化学習システ ムを構築した. 今後,2つのシステムを統合した光 電電子銃自動制御システムを開発する

金属スピントロニック素子による高効率テラヘルツ波発生の研究

谷 正彦¹, 中嶋 誠², 北原 英明¹, 古屋 岳¹, タララ ミゼル¹, マグウサラ ヴァリン², エスカニョ メアリクレア¹ ムールデラ ホセリート¹, 郭 其新³

1) 福井大学・遠赤外領域開発研究センター, 2) 大阪大学レーザー科学研究所,

3) 佐賀大学・シンクロトロン光応用研究センター

SUMMARY

本研究は光励起によるスピン流を利用した高効 率なテラヘルツ(THz)波発生素子(Fe/Pt2重層金属ス ピントロニック素子)の開発を目的とする。今年度 は以下の取り組みを行った。

- アンテナ部のPt膜厚をさ200nmにすることで、
 時間波形のpeak-to-peak値で、アンテナ構造がない場合に比べて、Diabolo型アンテナ(アンテナ長2mm)の場合で約6.3倍、長方形型アンテナ
 (40 µm x 200 µm)の場合で約6.6倍増大することが確認された(FIG参照)。
- ロックインアンプによる位相同期信号検出を、 従来の励起光の光チョッパー(変調周波数 1 kHz)による変調方式からバイアス磁場の交流 変調(±10 mTの1kHz正弦波変調)にすることで、 検出信号を約1.9倍に改善することができた。
 これらの改善により、金属スピントロニック素子 がTHz時間領域分光法における実用的な広帯域放 射素子として利用できることが実証された。

テラヘルツ分光によるバイオミネラルの結晶多形同定とイメージング 丸山美帆子¹,塚本勝男¹,古川善博²,田尻理恵³,岡田淳志⁴,田中勇太朗⁴, 門馬綱一⁵,杉浦悠紀⁶,中嶋誠⁷,森勇介¹,吉村政志⁷

1) 大阪大学大学院工学研究科, 2) 東北大学大学院理学研究科、3)田尻薄片製作所, 4)名古屋市立大学医学部, 5)国立科学博物館, 6)産業科学研究所, 7) 大阪大学レーザー科学研究所

SUMMARY

骨や尿路結石に含有されるリン酸カルシウム系 結晶の安定相であるアパタイト(HAp)と、準安 定相であるリン酸八カルシウム(OCP)の正確な 結晶相同定のために、テラヘルツ領域における赤 外分光分析反射スペクトルを取得した。合成によ り作成したAp、OCP-pure、OCP構造中のCaの一 部をNaと置換したOCP-Naを対象とした.11THz 以下の周波数で、3つの相に明確な差が見出され た.これらに基づき、CaPの相同定において信頼性 の高い分析が期待できる.

超高速テラヘルツ波計測システムの開発とゆらぎ領域の伝導度計測 川山巌^{1,2},村上博成²,斗内政²

1)京都大学大学院エネルギー科学研究科, 2)大阪大学レーザー科学研究所

SUMMARY

「ゆらぎ」領域の高速・高感度検出の基盤技術を 確立するため、高繰り返し周波数対応THz検出シ ステムの開発を行った。従来は、THz信号を数kHz の変調でロックイン検出していたが、本研究では 80MHzのパルス信号をボックスカー積分器で直接 検出することを目指した。市販の400MHz電流ア ンプをテラヘルツ検出部である光伝導アンテナに 接続し、出力特性の評価を行なった。その結果、 SN比は十分でないものの、光電流波形を検出する ことに成功した。今後は、光伝導アンテナと電流 アンプのインピーダンスマッチグ等を考慮した専 用回路で接続し、リンギング等を除去することに より高速・高感度化を実現する。

日本の伝統模様(青海波)のTHz-SRRパターンの応用 李 相錫¹, 松永 忠雄¹, 中嶋 誠² 1) 鳥取大学工学部, 2) 大阪大学レーザー科学研究所

SUMMARY

メタマテリアルの多くはSprit Ring Resonator (SRR)の周期配列で実現される。SRR周期配列で用 いるパターンはC字型またはコの字型が主である。 本研究では日本の伝統伝統模様の一種である青海 波パターンをテラヘルツ帯SRRのパターンとして 応用し、THz波の透過特性を調べ、THz帯のメタ マテリアルデザインにおけるフレキシビリティを 高めることが目的である。青海波パターンにおい て線幅、線間間隔、線の数をパラメータとし、有 限要素法シミュレーションによる設計を行い、高 抵抗Si基板上にAuを用いてSRRパターンの作製も 行った。今後THz波の透過特性を調べる。

FIG. 高抵抗Si基板上に作製した青海波パターン。左の写 真は4インチウェハ全景を示し、線幅、線間間隔、線の 数が異なる12種類のパターンが作製されている。右の拡 大写真は線の数が5本の青海波パターンを示す。

量子ビームにより誘起されたテラヘルツ電場の超高速検出 菅晃一¹, 中嶋誠² 1) 大阪大学産業科学研究所, 2) 大阪大学レーザー科学研究所

SUMMARY

これまでに、特殊相対性理論で予測される「電 磁場の歪み」(図1(a))が直接的に観測されたこ とはなかった。我々は、その歪みの直接的な実証 を行うために、電子線加速器と同期した超短パル スレーザーを用いて、さらに電気光学効果による 超高速電場計測を実施した。実験では、エシェロ ン式シングルショット計測法による超高速時空間 電場分布を得た。この測定により、特殊相対性理 論で電場分布に歪み・電場収縮が生じている事を 実験的に明らかにした(図1(b))。これにより、 電磁気における特殊相対性理論の基本現象である、 電場の収縮や収縮が起きる過程を世界で初めて直 接実証することに成功した[1]。

今後、電子由来の電磁場の放射現象の計測へも 応用が可能である。また、電場計測に基づき、光 源加速器のビーム診断による物質科学への貢献、 重粒子線による放射線治療のビーム診断が期待される。

[1] M. Ota et al., Nature Physics 18, 1436–1440 (2022).

プラズモン光伝導アンテナを用いたレーザーカオス光におけるモードの同時性の解明 桒島史欣¹, Mona Jarrahi², Semih Cakmakyapan², 森川治³, 白尾 拓也¹, 岩尾 憲幸¹, 栗原 一嘉⁴, 北原 英明⁵, 和田 健司⁶, 中嶋誠⁷, 原口雅宣⁸, 谷 正彦⁵

1) 福井工業大学、2) カリフォルニア大学、3) 海上保安大学校、4) 福井大学教育学部、5) 福井大学遠赤センター、 6) 大阪府立大学電子数物系、7) 大阪大学レーザー科学研究所、8)徳島大学

SUMMARY

これまで、市販の半導体レーザー(数百円)に外 部鏡による光学的遅延帰還をかけることでレー ザーカオス発振させ、安定、広帯域、低価格な THzの発生検出ができることを証明してきた。こ の原因としては、レーザーの縦モードの同時発振 性が重要である。図1に示す、外部から逓倍器に よるTHz波を加え、縦モード間の光ビート周波数 との差を1GHz程度とし、RF領域で観測し、その 安定性を評価することで、モードの同時性を評価 した。今回は、特にレーザーの閾値付近まで、 レーザーカオス光の光ビートが安定していること を示し、カオスの構造安定性を実証した。また、 戻り光を加えた多モードの半導体レーザー方程式 を用いて、遅延帰還のみでモードが同期してゆく 領域があることも見出した。今後これらの詳細に ついて調査してゆく。プラズモン光伝導アンテナ の制作においても個々の部分についての試作を 行ったので全体の制作を行う。カオスの構造安定 性は、自律的な制御につながり、これまでの精密 制御を超えたメタ工学の創造につながる。

ポスト5G/6Gに向けたテラヘルツ波帯材料評価技術の開発とデバイス応用 牧野孝太郎¹, 中嶋誠²

1) 産業技術総合研究所 デバイス技術研究部門 2) 大阪大学 レーザー科学研究所

SUMMARY

2030年代には次世代の通信規格である6G通信 が商用化されると見込まれており、それに向けた 各種のデバイスの開発が急務となっている。デバ イス設計には材料の特性を適切に評価し、反映さ せることが不可欠であるが、特に金属材料のテラ ヘルツ波帯での特性は十分に評価されているとは 言えない。本研究では金属薄膜に対してテラヘル ツ波時間領域分光やテラヘルツ波時間領域エリプ ソメトリー測定を実施し、高精度での評価が可能 かどうかを検証し、またRuやCoなどの次世代の配 線材料として注目されている金属について、材料 違いや成膜方法による差、膜厚の依存性に関する 知見を得ることを目的とした。加えて、プログラ マブルなテラヘルツ素子を実現させる相変化材料 に関しても着目しており、その評価を実施した。 その結果、薄膜化することで金属の測定が原理的 に可能であるが現時点では測定精度が不十分なこ とや、高精度な測定を実現させるための装置の改 良の必要性が浮かび上がった。

高強度テラヘルツパルスによるスピン制御の研究 森田健¹, 中嶋誠²

1) 千葉大学, 2) 大阪大学レーザー科学研究所

SUMMARY

半導体中の電子スピンが高強度THzパルスによっ てどのように制御できるかについて研究している。 本年度は空間分解測定を行い、高強度THzパルス によってスピンが移動するかどうかの観点で実験 を行った。最大電場強度が60 kV/cmである正負が 反転した2つのTHzパルスを光励起スピンに照射し, 方向に一軸の空間分解測定を行った.照射したTHz パルスの電場は正負が反転しているはずなのに, 空間移動の差は得られなかった.本実験条件下で は、THzパルスを照射してもスピンは移動せず,ス ピンの信号だけが減衰しているという結果を示し ている.スピンにTHzパルスを照射することによ るスピン制御は上記の実験条件では難しいことが 分かり、ただ、スピンの信号には大きな変調が見 られることを明らかにした.

テラヘルツ帯における鋭峻化された透過スペクトルを有する金属開口の作製 菜嶋茂喜¹ 1) 大阪公立大学

Radiation damage investigations on MBE-grown GaAs/Si epilayers

Roni Andig¹, Craig Egan Allistair D. Tan¹, Gerald Angelo R. Catindig¹, Erick John Carlo D. Solibet¹, Alexander E. de los Reyes¹, Horace Andrew F. Husay¹, Elizabeth Ann P. Prieto², Melvin John F. Empizo³, Karl Cedric P. Gonzales¹, Ivan Cedrick M. Verona¹, Hannah R. Bardaloza¹, Vallerie Ann I. Samson⁴, Giuseppe Filam O. Dean⁴, Nobuhiko Sarukura³, Armando S. Somintac¹, Elmer S. Estacio¹, and Arnel A. Salvador^{1,2}

1) National Institute of Physics, University of the Philippines Diliman, Quezon City 1101, 2) Materials Science and Engineering Program, College of Science, University of the Philippines Diliman, Quezon City 1101, Philippines 3) Institute of Laser Engineering, Osaka University, 2-6 Yamadaoka, Suita, Osaka 565-0871, Japan, 4) Philippine Nuclear Research Institute, Diliman, Quezon City 1101, Philippines

SUMMARY

Several reports have already examined the radiation effects on GaAs and Si semiconductor materials. However, little is known regarding the effects of radiation on the THz properties as most investigations focus on GaAs' and Si's electrical properties and solar cell applications. In this regard, we performed radiation damage investigations on MBE-grown GaAs/Si epilayers. GaAs epilayers were first grown with varying thicknesses and growth temperatures on Si (100) and (111) wafers. Afterwards, the MBE-grown GaAs/Si epilayers were irradiated with electrons with 100 to 200 kGy absorbed doses. Both non-irradiated and electronirradiated LT-GaAs/Si epilayers exhibit similar THz peak-to-peak amplitudes, frequency bandwidths, and dynamic ranges regardless of the Si substrate orientation. Our results suggest that MBE-grown LT-GaAs/Si epilayers are robust to electron radiation and can be developed further for radiation-durable applications.

FIG. 1. THz time-domain spectra non-irradiated and electronirradiated MBE-grown GaAs epilayers grown on (a) Si (100) and (b) Si (111) wafers.

放射性汚染水におけるテラヘルツと紫外光を用いたトリチウムの選択的除染の検討 小林かおり¹,猿倉信彦² 1) 富山大学, 2) 大阪大学レーザー科学研究所

SUMMARY

放射性汚染水からのトリチウムの除去は重要な 課題である。この問題ではトリチウムの分量を調 べることと分離する2つの課題がある。前者に対し てはテラヘルツ光を用いたその場でのモニター、 後者に対しては、赤外光と紫外光を用いて分離す る手法を検討している。この手法はトリチウムの みの高効率分離して除去となり大きなインパクト がある。

本年度は、分離に関して用いるべき赤外光の波 長について議論を進めた。放射性汚染水ではトリ チウムは水(HTO)の形態であるため、沸点である 100℃でのスペクトル線の形状も考慮して、シ ミュレートし、軽水と干渉しない振動モードの検 討を行った。さらに、これまでの実験データから 基準振動の振動数と非調和定数を求め、任意の振 動準位について計算できる基礎データを得ること ができた。

火山灰の低コスト高安定CW-THz 波による分光 桒島史欣¹,川上由紀^{,2}

1) 福井工業大学, 2) 福井工業高等専門学校

SUMMARY

自然災害の多い日本においては、被災者の状況を 高速かつ、正確に知ることは喫緊の課題である。 THz波を用いることで、高速化が望める。最適な 透過特性をもつ周波数帯を調べるために、火山灰 に対するSub-THz波帯の透過特性の測定系を構築 した。今回は、サンプルの不均一性の影響を避け るために、集光せず直径2インチの平衡ビームの THz波を用いた。数センチの火山灰のサンプルに 対して透過の実験が行えた。通常の多モード半導 体レザーを用いた場合は信号が安定せず分散も大 きかったが、レーザーカオス光を用いることで、 再現良く、ほとんど分散の無い実験結果が得られ るようになった。この結果は論文にまとめ掲載が 決定した。今後より広帯域化を目指す。また、本 研究で用いた半導体レーザーは、数百円の市販の ものであり、外部鏡による戻り光を加えることで カオス発振させている。低価格な分光装置の実現 が可能である。本システムを用いることで、THz 分光も大きく普及することが期待される。

FIG. 1 レーザーカオスによるTHz-TDS のサンプル部分

統計モデルによる光学材料のシミュレーションおよびその物性への応用に関する研究 佐々木 明

量子科学技術研究開発機構·関西光科学研究所

SUMMARY

従来の手法では解析が困難な、光学損傷の複雑 なメカニズムを解明することを目的に、多様な自 然界および人工的な絶縁破壊現象の物理モデルと シミュレーションの研究を行っている。

今年度は一次元モデルによる雷現象の解析を行 なった。雷雲中に鉛直方向に一次元の大気の柱を 考える。雲の中で氷晶の衝突による電荷分離が起 きた後、生成した電荷の一部が雨とともに地表に 落下すると考えると、雲の高度や降雨の強さに対 して観測されている鉛直方向の電位の分布を再現 し、さらに高地の雷、冬季の雷などでの特徴を再 現することができる。これに電界の強度の二乗に 比例する確率で絶縁破壊が起こるという放電のモ デルを適用すると、雷の発生と伝播の特性、例え ば対地放電、雲中放電およびスプライトのような 上空への放電の発生の確率の評価が行えると考え られる。単純化な一次元モデルは、雷放電の興味 ある現象の解析に有用であると考えられる。

(図)(a) 雷雲の一次元の等価回路。大気の鉛直方向の 柱を抵抗とコンデンサで表しこれとグローバルサーキッ トとで閉回路を構成する。充電電流と降雨電流で雷雲の Upper positive、 Lower negative、pocket positiveからな る電荷分布が生成する。(b)電界強度、抵抗値(赤が絶 縁破壊が起こった場所を示す)、電流の高度に対する時 間発展。(c)各高度における電流の時間発展。各場所で パルス状に放電が発生し、伝播することを示す。

- 64 -

量子ビーム源の開発、制御ならびにその応用に関する研究 藤田雅之¹,本越伸二¹,染川智弘¹,谷口誠治¹,ハイク・コスロビアン¹,倉橋慎理¹,兒玉了祐² 1) (公財) レーザー技術総合研究所, 2) 大阪大学レーザー科学研究所

高出力レーザー装置を安定に稼働するためには、 使用する光学素子の高レーザー耐力化とともに、 その耐性(レーザー損傷しきい値LIDT)を正確に 把握することが重要である。

LIDTの評価は、従来顕微鏡による表面観察により行われていたが、より早く、正確に評価するために自動化が進められている。そのために最も重要な課題は、レーザー照射時の損傷を検出することである。

2022年度は損傷時に発生するプラズマ発光に着 目し顕微鏡観察と比較を行った。反射防止コート の評価の結果では、約20J/cm²以上では顕微鏡観察 のLIDTと一致することが確認できた。

Optical image transfer by using a multimode fiber

T. Nakamura¹, Y. Arikawa², T. Hayakawa² 1) SANKEN, Osaka university, 2) Institute of Laser Engineering, Osaka University,

Summary

Multimode fibers are usually used as "non optical imaging" device because a transmitted light profile is speckle pattern like figure 2. (b). In the reality, an image is converted transferred via a lot of modes in the multi mode fiber. The pattern is independent for every input potions of the multi mode fiber. If point spread functions for all points in the input are measured, the optical image can be reconstructed.

If this method would be successful, it can be applied laser fusion plasma experiment such as ultra high resolution imaging detector at very close position from the plasma. Multimode fiber 100µm core NA 0.22 62 cm

(a) Test injected pattern image (TEM 11 mode from a fiber)

(b)Multimode speckle pattern

(c)Reconstructed image (not well reconstructed due to issues in the experimental setup).

Figure 2. First testing results of the multimode fiber imaging (not succeeded yet).(a) is test injection pattern from MM fiber input. (b) is output image from MM fiber by (a). (c) is reconstructed image which is not succeeded but single bright spot is seen.

Improvement on characteristics of Pr³⁺-doped glass scintillator for neutron detector Takahiro Murata

Faculty of Advanced Science and Technology, Kumamoto University, Japan

SUMMARY

The aim of this collaborative research is to develop a glass scintillator material for high performance neutron beam measurements that combines fast response and high light output.

This year, we developed a high Li ion-containing glass, LCG, as a new host material and investigated the dependence of PL properties on Pr^{3+} concentration in LCG: Pr^{3+} glass samples. The PL intensity increased with increasing PrF_3 concentration up to 1 mol% and then was almost the same at 1 mol% and 2 mol%. This result indicates that the possibility of developing glass scintillators with fast response and high light output by optimizing the concentration of PrF_3 between 1 and 2 mol% in LCG glass. The high-performance neutron glass scintillator to be developed in this collaborative research will be a fundamental technology that will support a safe and secure society.

Exploring fast ultraviolet cross-luminescence scintillation from barium fluoride crystal under high pressure M. Cadatal-Raduban^{1,2}, L.V. Mui², T. Shimizu², N. Sarukura² and K. Yamanoi² 1) Massey University, New Zealand, 2) Institute of Laser Engineering, Osaka University, Japan

SUMMARY

The luminescence from BaF_2 contains a very fast and a slow component. The fast component is crossluminescence (CL). The decay time of CL is 600 ps, which is 1/1000 that of the slow component called selftrapped exciton emission. However, the CL wavelength is in the vacuum ultraviolet region. Numerical calculations predicted that the wavelength of CL can be shifted to longer wavelength by controlling the band gap energies through high pressure application to the crystal [1]. In this research project, we observed experimentally the pressure dependence of the shift in the CL wavelength when pressure is applied to the BaF_2 crystal. The luminescence and x-ray diffraction were measured simultaneously under high pressure in a sapphire anvil. X-rays of 20 keV was used as excitation source. Figure 1 shows the relationship between pressures and lattice constants of BaF₂. The crystal phase was changed at 3 GPa from cubic to orthorhombic and CL was shifted to longer wavelength. [1] M. Cadatal-Raduban et al J. Chem Phys 154, 124707 (2021).

FIG. Change in lattice constant under high pressure. The crystal phase changed from cubic to orthorhombic at 3 GPa pressure. This indicates a change in the electronic structure and consequently a shift in the emission wavelength.

次世代高機能光ファイバデバイスの開発とその応用 藤本靖 *千葉工業大学*

SUMMARY

We successfully demonstrated a pulse laser with a fundamental repetition rate of 1 GHz in passively Qswitched mode-locked oscillation by using Yb-Mgdoped silica glass fiber (YbMgSGF). The YbMgSGF core glass, fabricated by the zeolite method, showed a Yb2O3 content of 5.46 wt%. To the best of our knowledge, our laser is the first silica-glass-based, Ybdoped fiber laser operating at a fundamental repetition rate of gigahertz. The laser cavity was constructed by a 102-mm-long YbMgSGF as a laser medium and a semiconductor saturable- absorber mirror as a modelocker. The laser output power reached 5.93 mW, and its slope efficiency and lasing threshold power were 3.6% and 5.3 mW, respectively. The peak wavelength of the oscillation was 1039 nm. We also discuss the conditions to transition from Q-switched mode-locked operation to continuous-wave mode- locked operation. The proposed fiber laser can serve as a seed laser for a master oscillator power amplifier for a high-power, high-efficiency pulsed fiber laser source.

Fig. 3. Absorption (blue) and fluorescence (black, dotted line) spectra of Yb–Mg-doped silica glass and laser oscillation spectrum (black, solid line) and Gaussian fit (red) i Mg–co-doped Yb-doped silica glass fiber when the output power is 5.13 mW: (a) wavelength range between 950 and 1150 nm; (b) wavelength range between 1025 and 1075 nm

Fig. 2. Schematic diagram of experimental setup.

Fig. 3. Absorption (blue) and fluorescence (black, dotted line) spectra of Yb–Mg-doped silica glass and laser oscillation spectrum (black, solid line) and Gaussian fit (red) in Mg–co-doped Yb-doped silica glass fiber when the output power is 5.13 mW: (a) wavelength range between 950 and 1150 nm; (b) wavelength range between 1025 and 1075 nm.

新奇層状複合アニオン化合物を母材とした新規蛍光体の開発 岩佐祐希¹⁾、山ノ井航平²⁾、荻野拓¹⁾ 1) 産業技術総合研究所, 2) 大阪大学レーザー科学研究所

SUMMARY

複数のアニオンを含んだ無機化合物である、複 合アニオン化合物を母材とした新規蛍光体開発を 行った。今年度はEu³⁺イオンを添加した蛍光体の 蛍光特性の評価を行った。電気双極子遷移である ${}^5D_0 \rightarrow {}^7F_2$ 遷移は1.32 msの蛍光寿命を持つことが分 かった。この蛍光寿命から推定した内部量子収率 は78 %となり、積分球を用いた測定から求めた内 部量子収率と良い一致がみられた。このことから、 本物質は複数のピークで発光し、高い量子収率を 持つことが分かった。

高強度レーザーを用いた高機能性有機結晶創成法の開発 吉川洋史¹

SUMMARY

本研究の目的は、高強度レーザーによる結晶化 制御法を用いて、高機能を有する結晶を創製する ことにある。本年度は、特にレーザーアブレー ションによる結晶核発生の制御に関する研究に取 り組んだ。具体的には、尿素をモデル化合物とし て結晶核発生のパルス時間幅・エネルギー依存性 を系統的に調べた。その結果、尿素の結晶核発生 の振る舞いが、キャビテーションバブルの生成に よる過飽和度の上昇と、温度上昇による過飽和度 の減少という2つの要素の競争関係により説明で きることを見出した。本論文は、Applied Physicss A誌に原著論文として発表している(右図)。

ホウ酸系光学結晶の高品質化 森勇介1, 吉村政志2 1) 大阪大学大学院工学研究科, 2) 大阪大学レーザー科学研究所 **SUMMARY** (a) 4.2 mm (Maximum input power dencity: 201 MW/cm²) (b) 6.0 mm (Maximum input power dencity: 96.7 MW/cm²) (M) 100 30 €40 レーザー科学研究所で育成した大型・高品質非 power (W) -53.3 -44.2 -35.2 power (W) 53.3 -44.2 -35.2 -22.2 線形光学結晶CsLiB₆O₁₀(CLBO)から大口径波長 og 30 average 20 age 20 変換素子を作製し、大阪大学、スペクトロニクス 員 10 (株) と三菱電機(株) との共同研究によって波 員 10 長266nmの高平均出力のピコ秒パルス深紫外光を 144 146 150 152 148 144 146 148 150 152 発生させた。右図のビーム径4.2mmの(a)、6.0mm Holder temperature (°C) Holder temperature (°C) (c) 8.0 mm (Maximum input power dencity: 54.4 MW/cm²) _ 1.2 の(b)のように、平均出力として35W級の発生に成 'n € 40 **→**90.2 **→**80.6 **→**71.6 **→**62.4 Input ja j 1 Jower 30 power (W) _____ 53 3 ____ 44 2 ____ 35 2 功しているが、出力が増えるに連れて結晶の発熱 power 9.0 による温度勾配が形成され、出力が最大となる温 of and 0.6 normarized S. 0.96 Š 度の低温シフト現象が顕著となった。ビーム径を 04.2 mm B 0.94 員 10 0.92 -06.0 mm 266-8.0mmに拡大することで、(c)のように温度シフト 0 E 0.0 0.2 120 125 130 144 146 148 150 152 % が抑制され、右下の図のように出力の立ち上がり Time (s) Holder temperature (°C) 138 118 128 148 時間特性も良好となることが明らかになった Time (s) [Optics Continuum Vol.1, 2274 (2022)]_o FIG. CLBO素子に入射する532nm平行ビームの直径を 変えた時の266nm光波長変換特性。右下の図はビーム径 を変えた時の出力の立ち上がり時間特性。いずれも Optics Continuum誌 より引用。

ZnO Synthesis (via Spray Pyrolysis) and Optical Characterization for Radiation Detection

V. A. Samson¹, M. J. F. Empizo², N. Sarukura²

1) Philippine Nuclear Research Institute, Philippine, 2) 2Institute of Laser Engineering, Osaka University, Japan

SUMMARY

Thin film deposition is crucial in fabricating ZnObased devices such as radiation detectors, photovoltaic solar cells, piezoelectric generators, etc. One efficient and cost-effective way to deposit ZnO thin film is through the spray pyrolysis method. In this study, ZnO thin films were deposited in glass substrates via spray pyrolysis at varying zinc acetate precursor concentrations and substrate temperatures. The structural, optical, and photoluminescence properties of the films were investigated via XRD, SEM, UV/Vis, and photoluminescence spectroscopy.

ZnO with wurtzite structure was successfully deposited in glass substrate via spray pyrolysis method. ZnO crystals have preferential growth in (100) and (110) planes. In spectroscopy, five emission bands were observed in the PL spectra of the samples namely: UV, violet, blue-green, green, and yellow-orange emissions.

FIG. PL Spectroscopy of ZnO. UV emission is near-band edge emission of ZnO. Green emission (500-nm) is possible surface defects in the nanocrystalline particles of ZnO nanomaterials.

PL spectroscopy of ex-situ regrown AlGaN layers for enhancement mode GaN-based MIS-HEMTs Joel T. Asubar¹, Shogo Maeda¹, Ali Baratov¹, Masaki Ishiguro¹, Toi Nezu¹, Takahiro Igarashi¹, Kishi Sekiyama¹, Keito Shinohara², Melvin John F. Empizo², Akio Yamamoto¹, and Nobuhiko Sarukura² 1) University of Fukui, Japan, 2) Institute of Laser Engineering, Osaka University, Japan

SUMMARY

In this work, we compare the structural, optical and electrical properties of our proposed recessed-gate with GaN-based regrown metal-insulatorbarrier semiconductor high-electron-mobility transistor (MIS-HEMTs) (see Figure 1a) with those of conventional recessed-gate GaN-based MIS-HEMTs (Figure 1b). We have previously reported record combination of drain current and threshold voltage from our proposed device. To shed light on the possible mechanism of this excellent performance. performed we photoluminescence spectroscopy on our regrown AlGaN/GaN and commercially available AlGaN/GaN heterostructures. We found highly reduced yellow luminescence (YL) intensity around 2.1 to 2.2 eV in regrown AlGaN/GaN layers (Figure 1c), evidencing the possible reduced point defects, leading to high positive threshold voltage and high current for the corresponding device.

新規高融点酸化物単結晶の育成と光学特性評価 横田有為^{1,2}, 堀合 毅彦²

1) 東北大学金属材料研究所, 2) 東北大学未来科学技術共同研究センター

SUMMARY

これまで材料探索が進んでこなかった2200℃以上の融点を有する機能性単結晶材料に対して、東 北大学が新たに開発した高融点酸化物材料の結晶 育成技術を用いることで、様々な発光中心元素を 添加した高融点単結晶を作製した。

その中でErを添加したLa₂Hf₂O₇単結晶に対して、 大阪大学が保有する赤外領域までの測定が可能な 蛍光測定装置を用いて赤外発光特性を調べた結果、 1000および1500 nm近傍にEr³⁺イオンに起因する発 光が確認された。当該材料は、従来材料に比べて 大きな密度を有しており、高エネルギー放射線向 けの新たなシンチレータ結晶としての応用が期待 される。

真空紫外領域における光学材料の屈折率の測定 梅村 信弘¹,吉村 政志²,... 1) 公立千歳科学技術大学, 2) 大阪大学レーザー科学

SUMMARY

真空紫外線波長領域に透過率を有する光学材料の屈折率について、プリズム分散法により精密に 測定するための測定系の検討を実施した(Fig.(a))。

具体的には、測定に必要なレーザー光源として Nd:YAGレーザーの第5高調波による深紫外線パ ルス光(波長212.8 nm)を発生させるとともに、170 nmの真空紫外線発生の検討を実施した。また、回 転ステージを調達するとともに窒素チャンバーの 設計・作成及び組み立てを行った。

予備実験として、SBO結晶のプリズムを用いて 屈折率の測定を行い、波長632.8 nmの屈折率の測 定を行った。また、波長266 nm の屈折率温度微分 (*dn/dT*)を測定し、正であることが判明した。

高密度プラズマ中における抵抗率勾配における強磁場生成のモデリング

羽原英明^{1,2},藤域淳平¹,上山慶典¹,安部勇輝^{1,2},城崎知至³,長友英夫²

1)大阪大学大学院工学研究科,2)大阪大学レーザー科学研究所,3)広島大学大学院先進理工系科学研究科

SUMMARY

本研究は、高速点火方式において追加熱レー ザーとプラズマの相互作用によって生じる高速電 子の発散を抑制することを目的としており、その 手法の一つとして、抵抗率勾配で生成される自己 生成磁場による電子集束を検討している。本年度 は、昨年度行った実証実験に対して、流体シミュ レーションを用いて求めた抵抗率分布と実験結果 との相関について考察を行った。その結果、抵抗 率勾配の大きさおよび電子密度から仮定した高速 電子生成位置(右図(a)の矢印箇所)での半径の2 乗の積をCollimation indexと定義すると実験結果 とよく似た傾向を示すことがわかり、抵抗率勾配 の大きさだけではなくその分布も重要なパラメー タであると推測された。

超短パルスレーザー加工の統合シミュレーションコードの開発

古河裕之¹, 矢花一浩², 長友英夫³, 三間圀興³,

1) レーザー技術総合研究所, 2) 筑波大学計算科学研究センター, 3) 大阪大学レーザー科学研究所

SUMMARY

本年度は、超短パルスレーザー加工において非 常に重要である「固体中の電子励起過程」の解明 に注視した。時間依存密度汎関数理論コードであ る「 SALMON (Scalable Ab-initio Light-Matter simulator for Optics and Nanoscience)」を用いて、 SiO₂ 結晶に超短パルス高強度レーザーを照射し、 光電場による励起エネルギー、及び励起電子数の 時間発展を求めた。さらに、SALMON により、電 子の光励起のレート係数のレーザー強度依存性を 求めた。

赤・緑・青色レーザ光源におけるスペックルの評価と抑制技術の開発 田辺稔¹,越智圭三²,山本和久² 1) 産業技術総合研究所, 2) 大阪大学レーザー科学研究所

SUMMARY

半導体レーザをディスプレイや照明の光源とし て使用した場合、狭帯域を有する光源であるため スペックルが発生し、精密な放射量や色度の測定 に影響を及ぼす。本研究では、この光源からのス ペックルの定量的な評価や、その低減技術の確立 を目的とする。

右図のような半導体レーザと積分球を組み合わ せた光源から放射されるスペックルコントラスト *C*,を、専用の測定器を用いて定量的に評価を行っ た。今回、シングルモードとマルチモードの半導 体レーザを用いて、それぞれの*C*,を評価した結果、 マルチモードレーザを使用することにより、ス ペックルを大幅に抑制できることが分かった。今 後は、これらの結果を応用し、レーザ光源を用い たディスプレイや照明機器の信頼性の向上させる 研究に取り組む予定である。

Nonlinear interaction in multi-layer fluid interfaces with density stratification Chihiro Matsuoka^{1,2,3}

1) Graduate School of Engineering, Osaka Metropolitan University, 2) Nambu Yoichiro Institute of Theoretical and Experimental Physics (NITEP), Osaka Metropolitan University, 3) Osaka Central Advanced Mathematical Institute (OCAMI), Osaka Metropolitan University

SUMMARY

Nonlinear interaction between two interfaces in the incompressible multi-layer Richtmyer-Meshkov instability (RMI) is investigated using the vortex sheet model (VSM) theoretically and numerically. We obtained the following results that

• when a strong vortex sheet approaches a weaker one possessing an opposite sign to the former sheet, a locally peaked vorticity of the opposite sign is induced on the weaker sheet,

• the interaction of the opposite-signed vorticity induced on the weaker sheet with the stronger sheet further amplifies the strength of the stronger sheet.

These results are applicable not only to plasma physics but also to various areas, such as geophysical fluid mechanics and marine engineering.

FIG. Temporal evolution of two interfaces in RMI, where time passes from (a) to (c). Panel (d) is the magnification of the boxed area of (c). Blue (red) filled-in circles denote the largest vorticity points with a negative (positive) sign, while open circles denote the second largest vorticity points designated by the same colors.

レーザーピーニングにおける照射条件最適化に関する研究 部谷 学^{1,2},糸林恵人¹,重森啓介³ 1) 元・大阪産業大学工学部電子情報通信工学科,2)近畿大学工学部電子情報工学科, 3) 大阪大学レーザー科学研究所

SUMMARY

従来の直接照射型のレーザーピーニングでは、 集光スポット中央近傍の金属表面は溶融し、引張 り応力が残留し、その周辺部に圧縮残留応力領域 がドーナツ状に形成される。2つの集光スポットを 用いれば、スポット間に圧縮残留応力が重なる領 域が形成でき、効果的な圧縮残留応力付与が期待 できる。本研究では、スポットの間隔およびずら し距離を変更して実験を行った結果、1 mm以上の スポット間隔、250-350 µm程度のずらし距離にお いて、処理金属表面の圧縮残留応力の増大が観測 された。これによって、処理時間の短縮、深部へ の圧縮残留応力の付与が期待できる。

繰り返しレーザー応用実験のためのリアルタイム制御システムの開発 小田靖久¹ *1) 摂南大学*

SUMMARY

10~100Hzで繰り返し動作する高出力レーザー の開発が進む中、これを液滴ターゲットに照射す る研究が検討されている。高繰り返し動作での実 験では、ショット間のターゲット位置制御を自動 化する必要がある。本研究では、ターゲットの位 置を直線状に複数の光センサが配置されたフォト ダイオードアレイにより検出し、フィードバック 制御をするシステムの構築を目指している。この ような制御システム開発に向けた準備として、 PLC(Programmable Logic Controller)上に光センサ信 号の閾値検出と直動ステージの制御指令出力を行 うプログラムを開発している。今年度は、液滴 ターゲットに先駆けて液体ジェットターゲットの 位置検出と制御を試みた。図1に示す実験系で、 液体ジェットをターゲットとして動作検証を行い、 液体ジェットノズルの位置を位置に収束させる フィードバック制御ができることを確認した。こ の成果は、繰り返しレーザーの運用に必要となる 自動制御技術の開発につながるものと期待される。

カーボンナノチューブフォレストメタマテリアルのテラヘルツ放射吸収特性 古田 寛¹ 1) 高知工科大学

SUMMARY

異方性電気伝導率を有する単層カーボンナノ チューブフォレストはテラヘルツメタマテリアル として有効であると考えられる。高品質カーボン ナノチューブ(CNT)構造体を形成するには熱的安定 な小直径高面積密度の触媒ナノ粒子が必要である。 酸化鉄ナノ粒子触媒を用い、自動カソードシャッ ターを用いた酸化02ガス制御による間欠スパッタ リング成膜で、C2H2(アセチレン)ガス源を用い た熱CVDによる単層CNT (SWNT) 成長と酸化 Fe ナ ノ粒子の形成過程について調査した。FIGは、ス パッタリング成膜したFe触媒上にC2H2ガスを供給 し熱CVD法で成長させたCNTのラマンスペクトルで ある。厚さ0.8 nm の Fe 触媒上に SWNTs を成長 させた。JEOL ARM TEMによる観察で直径 4 nm の SWNT の成長を確認した (FIG (b))。また、SWNT 成長時のFe触媒をアニールすると、高密度のFe触 媒が形成された[1]。本研究の一部は、科研費基盤 C 20K05093の支援を受けた。

[1] H. Furuta et al., FNTG63 (Aug 31, 2022, Tokyo Metro Univ.)

FIG. Raman spectra of SWNT and MWNT grown on shutter sputter Fe catalysts[2], (b) TEM image of the obtained SWNT and (c)AFM image of annealed Fe catalyst film deposited by shutter SPT on AlO(30nm)/th-SiO substrate [1]

透光性セラミックス材料の開発 古瀬裕章¹,黒沢将平¹,藤岡加奈² 1)北見工業大学,2)大阪大学レーザー科学研究所

SUMMARY

透光性セラミックスは、レーザー材料以外においても、白色照明用蛍光体やシンチレータ、ファ ラデー材料など幅広い光学分野へ期待されている. 様々な作製法がある中で、北見工大では放電プラ ズマ焼結法 (Spark Plasma Sintering: SPS)に着目し て、新しい機能性セラミックスの開発に取り組ん でいる.

本研究では昨年度に続き,SPS法を用いたフッ 化物系材料の透明化に取り組んだ.市販のCaF₂粉 体のSPS焼結を行い,透明化への課題抽出を試み た.

様々な条件で焼結を行った結果,850℃で焼結 した際に高い透光性を有する焼結体が得られた. しかし,波長1µmにおける直線透過率は60%程度 であるため,今後は,さらなる高品質化に取り組 む予定である.

FIG. SPSで焼結したCaF₂セラミックス.

Decay instabilities of whistler waves in solar wind plasmas T. Sano¹, Y. Sentoku¹ 1) Institute of Laser Engineering, Osaka University

SUMMARY

高速電波バースト(Fast Radio Burst; FRB)と呼ば れる天体現象では、ミリ秒程度の短い持続時間の 高輝度電波放射(振動数は1 GHz程度)が観測されて いる。この電磁波の無次元化された振幅は、a₀ = 10⁴を超える強度に相当する。FRBの放射源及び放 射機構については未解明であるが、マグネターと 呼ばれる10¹⁵ガウス程度の磁場を持つ中性子星と の関連が指摘されている。もし電波源が中性子星 のごく近傍にあると仮定すると、この高強度電磁 波は中性子星磁気圏を通り抜ける必要がある。

我々は、電子-陽電子プラズマ中で、磁力線に 沿って伝播する円偏光電磁波の伝播特性を詳しく 解析した。図に示すように、透過や反射、または プラズマを押しのけて侵入など、波の振幅に依存 して様々な振る舞いが存在することが明らかに なった。また、新しい「レーザー宇宙物理」の テーマとして、将来的にレーザー実験で検証可能 かどうかについても調べている。

第一原理計算によるGaNの結晶欠陥と光物性および熱物性に関する研究

河村貴宏¹,森勇介²,吉村政志³

1) 三重大学大学院工学研究科, 2) 大阪大学大学院工学研究科, 3) 大阪大学レーザー科学研究所

SUMMARY

電子機器の小型化、高出力化にともない放熱対 策の重要性が増している。GaNは200W/mK以上の 高い熱伝導率を有しており、従来のSiデバイスと 比較して放熱機構の小型化、簡略化が可能である。 デバイス設計においては構成材料の正確な物性値 を必要とするが、結晶中には意図するしないに関 わらず様々な結晶欠陥が含まれており、各種物性 (電子物性、光物性、熱物性など)に対して影響 を与えている。本研究では、GaN中の結晶欠陥が 熱物性に与える影響を明らかにすることを目的と して熱伝導率解析を行った。

300Kにおける GaN 完全結晶の計算結果 (325W/mK)を基準に考察すると、高純度(~10²¹ cm⁻³)のO不純物またはGa空孔を含む場合、熱伝 導率は約60~80%減少することが分かった。熱伝 導率の変化の大きさは欠陥(不純物)の種類に よって異なるため、今後は他の代表的な不純物 (Si、Mgなど)が含まれる場合についても解析を 行う予定である。これらの成果はデバイスの放熱 設計に必要な熱物性データの取得はもちろんだが、 熱物性への影響の少ない添加物の探索に繋がるこ とが期待される。

レーザー造形法によるシリカガラス構造形成

本越伸二1, 吉田実2, 藤岡加奈3, 坂本高保1

1) (公財) レーザー技術総合研究所, 2) 近畿大学理工学部, 3) 大阪大学レーザー科学研究所

SUMMARY

ガラス表面に構造を持つ回折光学素子は、様々 な応用分野で利用されている。この表面構造はイ ンプリントや、研削・除去加工で形成されている ため、その精度、自由度には限界があり光学素子 設計を制限する要因となっている。

本研究では、シリコーン油に紫外レーザー光を 照射することにより微細ガラス構造の形成を目的 に行っている。

2022年度はシリコンウェハ上に塗布されたシリ コーン油(厚さ1µm)に対して、波長193nmのArF エキシマレーザー光を20,000パルス照射し、一度 洗浄した後塗布、レーザー照射を繰返し、ガラス 化積層が可能であることを実証した。

Development of a sub-grid scale model for a stellar convective transport

政田洋平¹ 佐野孝好²(1) 福岡大学, (2) 阪大レーザー科学研究所

SUMMARY

天体プラズマの超低散逸性は, 方程式の離散化にと もなう数値散逸を避けられない天文シミュレーション研 究において顕在的課題になっている。特に, 乱流が介 在する物理現象の数値的研究においてその傾向は顕 著であり, 太陽ダイナモの研究はその代表例と言える。 信頼できる乱流モデル無しには正しい天体プラズマ研 究は不可能だと言える。

本研究は、天体プラズマ乱流現象のプロトタイプモデ ルとして太陽ダイナモに光を当て、従来とは一線を画し た乱流モデルを開発することを目的としている。

今年度は、電磁流体力学/平均場理論の中に現れる 乱流輸送係数を、シミューレーションデータからマシー ンラーニング手法を使って推定・抽出する手法につい て検討を進めた。特に注目したのは、物理法則に基づ く深層学習手法 (Physic-informed Neural Networks : PINNs, e.g., Raissi+17a,b) であり、ニューラルネット ワークの検討、乱流データの生成・成形(解像度の異 なるシミュレーションデータ群)、および、それらのデー タを使った PINNs機械学習のテストまでを行なった。 次年度以降、これらの検討結果にもとづき、プロダクト ランを実施予定である。

FIG. (上) 構築したネットワーク: PINNs - 91⁽下) 乱流計算のスナップショット(低解像&高解像)

プラズマ対向材の数値モデリング

砂原淳¹,城崎知至²,難波愼一²,西原功修³,山本直嗣⁴,森田太智⁴,東口武史⁵,富田健太郎⁶,畑昌育⁷,長友英夫³ ¹⁾Center for Materials Under Extreme Environments (CMUXE), School of Nuclear Engineering, Purdue University, USA,²⁾広島大学,³⁾大阪大学レーザー科学研究所,⁴⁾九州大学,⁵⁾宇都宮大学,⁶⁾北海道大学⁶⁾QST関西研

超伝導メタマテリアルを用いたMKIDs検出器の研究

複合アニオン化合物を用いた新規発光材料の開発 荻野拓¹,加藤隆寛¹,岩佐祐希¹,猿倉信彦² 1) 産業技術総合研究所, 2) 大阪大学レーザー科学研究所

SUMMARY

層状化合物の中には、積層構造が天然の量子井戸 として機能することにより、様々な特異物性を発 現する化合物が存在する。我々はこれまでに、"複 合アニオン化合物"の特徴を活用することで多くの 層状化合物を発見し、 $Sr_3Sc_2Cu_2Ch_2O_5$, Sr₂ScCuChO₃[1,2] など励起子発光を示す物質の合 成にも成功してきた。これらの化合物は、半導体 であるCuS層と絶縁層のSrScO層で構成されバンド エッジ近傍に鋭い発光線が観測される。これらの 類縁化合物である $Sr_2ZnCu_2Se_2O_2$ を合成したところ、 固相反応のみで比較的大型の結晶粒が生成してい ることを見出した。そこで昇温速度、保持時間、 焼成温度などの合成パラメータを変化させて結晶 サイズを確認したところ、高温焼成によりmmス ケールの単結晶が生成していることを見出した。 この成果を学会発表したほか、今後はこの単結晶 の結晶性、光学特性評価を進めていく予定である。 [1] H. Ogino et al., Appl. Phys. Lett. 101 (2012) 191901 [2] Y. Iwasa, H. Ogino et al., J. Mater. Sci.: Mater. Electron. 30 (2019) 16827-16832

レーザー駆動中性子源を用いた中性子共鳴透過分析技術に適用可能な測定システムの開発研究会 小泉光生¹, 弘中浩太¹, 李在洪¹, 余語覚文², 有川安信², 安部勇輝², 中井光男²

1)日本原子力研究開発機構 核不拡散・核セキュリティ総合支援センター,2)大阪大学レーザー科学研究所・光 量子ビーム科学研究部門

SUMMARY

本研究では、レーザー駆動中性子源(LDNS)を用 いた中性子共鳴透過分析(NRTA)技術開発の一環と して、大阪大学の超高強度レーザーLFEXから発生 したパルス中性子に適用できる中性子モデレータ、 中性子検出器及び飛行時間測定・分析システムの 開発を進めており、開発に関する打ち合わせ、議 論、情報交換などを行った。

議論などを基に開発したNRTAシステムおよび 超高強度レーザーLFEXを用いて中性子透過実験を 行い、中性子共鳴吸収スペクトル(右図)を取得 した。図の通り、試料による中性子共鳴反応に起 因する中性子透過率の減少が確認できた。本結果 は、中性子計数法を用いたNRTAシステムにより 核種の判別に成功したことを実験的に示すもので ある。

本実験の分析結果について、大阪大学が主体と なって実施した別の実験の結果と比較、照合し、 妥当性の検証を行った。本成果は論文へまとめ、 令和5年度中に発表する予定である。

