Development of laser driven kilo-Tesla magnetic field generator in micron scale

<u>D. Golovin¹</u>, A. Yogo¹, T. Pikuz^{2,3}, A. Faenov^{2,3}, Sentoku Y.¹, Iwata N.¹, H. Nishimura¹, M. Alkhimova^{3,4}, I. Skobelev^{3,4}, S. Pikuz^{3,4}, Y. Abe¹, Y. Arikawa¹, Fujioka S.¹, K. Koga¹, K. Okamoto¹, S. Shokita¹ and Kodama R.^{1,5}

¹Institute of Laser Engineering, Osaka University, Osaka, Japan

² Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan

³ Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, Russia

⁴ National Research Nuclear University (MEPhI), Moscow, Russia

⁵ Graduate School of Engineering, Osaka University, Osaka, Japan

Nowadays investigation on relativistic magnetic reconnection is attaching large attention. Some of the proposals [1] for its experimental realization is relativistic intensity laser-target interaction. In our research we propose relativistic laser driven micron scale strong (10^7 G) magnetic field generator for future magnetic reconnection experiments and investigate its parameters. Generator consist of Cu wire ($1600 \mu m$ in length, 100 μm in width) attached to the rear side of Al foil. It was heated by high intensity LFEX laser with pulse duration was ~1.5 ps, the estimated peak intensity was up to 10^{19} W/cm². To detect wire plasma parameters X-ray spectra were measured by focusing spectrometer with spatial resolution (FSSR) from both front and rear side of the target. Using advanced three zone kinetic modeling [2] of spectra electron temperature, electron density and ionization state were evaluated. At the same time image of the proton, accelerated from Al foil [3] was obtained. This image involves information about spatial distribution of magnetic and electric field inducted around the wire.

This work was funded by Grants-in-Aid for Scientific Research (Nos.25420911 and 26246043) from MEXT, A-STEP (AS2721002c), and PRESTO (JPMJPR15PD) organized by JST.

- 1. Gu, Y. J., Klimo, O., Kumar, D., Bulanov, S. V., Esirkepov, T. Z., Weber, S., & Korn, G. *Physics of Plasmas, 22*(10). (2015).
- Alkhimova, M. A., Faenov, A. Y., Skobelev, I. Y., Pikuz, T. A., Nishiuchi, M., Sakaki, H., ... Kondo, K. *Optics Express*, 25(23), 29501–29511. (2017)
- 3. Yogo, A., Mima, K., Iwata, N., Tosaki, S., Morace, A., Arikawa, Y., ... Azechi, H. *Scientific Reports*, 7, 42451. (2017)