Supersonic Plasma Turbulence in the Laboratory

T. G. White^{1,2}, M. T. Oliver¹, P. Mabey^{1,10}, M. Kühn-Kauffeldt³, A. Bott¹,
L. Döhl⁴, A. Bell¹, R. Bingham^{5,6}, R. Clarke⁵, J. Foster⁷, G. Giacinti⁸,
P. Graham⁷, R. Heathcote⁵, M. Koenig^{9,10}, Y. Kuramitsu¹¹,
D. Q. Lamb¹², J. Meinecke¹, T. Michel¹⁰, F. Miniati¹³, M. Notley⁵, B. Reville¹⁴, D. Ryu¹⁵, S. Sarkar¹, Y. Sakawa¹⁶, M. P. Selwood⁵, J. Squire^{17,18}, R. H. H. Scott⁵, P. Tzeferacos¹², N. Woolsey⁴, A. A. Schekochihin¹, G. Gregori¹

¹Department of Physics, University of Oxford, Oxford, UK ²Department of Physics, University of Nevada, Reno, USA ³Universität der Bundeswehr München, Germany ⁴York Plasma Institute University of York, York, UK ⁵Central Laser Facility, STFC Rutherford Appleton Laboratory, Didcot, UK ⁶Department of Physics, University of Strathclyde, Glasgow, UK ⁷AWE, Aldermaston, Reading, UK ⁸Max-Planck-Institut für Kernphysik, Heidelberg, Germany ⁹Institute for Academic Initiatives, Osaka University, Osaka, Japan ¹⁰LULI – CNRS, Ecole Polytechnique, CEA, France ¹¹Graduate School of Engineering, Osaka University, Osaka, Japan ¹²Department of Astronomy and Astrophysics, University of Chicago, Chicago, USA ¹³ETH Zurich, Zurich, Switzerland ¹⁴School of Mathematics and Physics, Queens University Belfast, UK ¹⁵Department of Physics, School of Natural Sciences, Ulsan, Korea ¹⁶Institute of Laser Engineering, Osaka, Japan ¹⁷Theoretical Astrophysics, California Institute of Technology, Pasadena, USA ¹⁸Walter Burke Institute for Theoretical Physics, Pasadena, CA 91125, USA

The properties of supersonic, compressible plasma turbulence determine the behavior of many terrestrial and astrophysical systems. In the interstellar medium (ISM) and molecular clouds (MCs), compressible turbulence plays a vital role in star formation and the evolution of our galaxy. Observations of both the density and velocity power spectra in the Orion B and Perseus molecular clouds show large deviations from those predicted for incompressible turbulence. Hydrodynamic simulations attribute this to the high Mach number in the ISM, although the exact details of this dependence are not well understood. Here we investigate experimentally the statistical behavior of boundary-free supersonic turbulence created by the collision of two laser-driven high-velocity turbulent plasma jets. We find a Mach number dependence in the slopes of both the density and velocity power spectra, which agrees with astrophysical observations of the Orion B and Perseus molecular clouds. Finally, we compare our results to existing 3-D hydrodynamic simulations of compressible turbulence.