

Kansai Photon Science Institute

Effect of small focus on electron heating and proton acceleration in ultra-relativistic laser-solid interactions

June 12th 2019, OPTO 2019

N. P. Dover¹, M. Nishiuchi¹, H. Sakaki¹, H. F. Lowe¹, Ko. Kondo¹, M. A. Alkhimova², E. Ditter³, O.C. Ettlinger³, G.S. Hicks³, A. Ya. Faenov^{4,5}, M. Hata⁴, N. Iwata⁴, H. Kiriyama¹, J. K. Koga¹, A. Kon¹, T. Miyahara⁶, T. A. Pikuz^{4,5}, A. S. Pirozhkov¹, A. Sagisaka¹, K. Zeil⁷, T. Ziegler⁷, U. Schramm⁷, Y. Sentoku⁴, Y. Watanabe⁶, M. Kando¹, K. Kondo¹

 ¹ KPSI, QST, Japan, ² MEPhI, Russia, ³ Imperial College London, UK, ⁴ Osaka University, Japan, ⁵ RAS, Russia, ⁶ Kyushu University, Japan, ⁷ HZDR, Germany

Optimising sheath acceleration from intense-laser solid interactions

To optimise acceleration:

- 1) High conversion efficiency of laser to energetic electrons at front surface
- 2) Efficient transport of electrons from front surface to rear surface
- 3) Tight & long confinement of electrons in sheath at rear surface

How might electron heating scale?

"Ponderomotive temperature" calculated from maximum transverse
momentum of electron in plane wave

$$p_{y,max} = a_0 m_e c$$
 $T_e = (\gamma_y - 1) m_e c^2 \sim a_0 m_e c^2$

- Neglects plasma fields, longitudinal momentum etc... other models also used
- All models depend only on laser intensity

- Unclear how electron heating behaves at ultrahigh intensity, and therefore unclear how ion acceleration will scale!
- **Experiment aims:**
 - Investigate electron heating at ultrahigh intensity
 - Optimise proton generation

J-KAREN-P experimental setup

Cansai Photon Science Institu

Laser-axis electron beam generated at ultra-high intensities

- Electron beam directed along laser axis (pointing varies +/- 5°)
- Vary intensity by changing laser energy and focusing - Electrons least divergent for small focal spot sizes
- Focal spot dependence of T_e

Sub-ponderomotive electron temperature increase with intensity

- At low intensities (large spot size), electron temperature *T_e* follows ponderomotive scaling
- At highest intensities, scaling worsens
- Suppression for smaller spot sizes at same intensity

Suppression of T_e due to small focal spots

Electron in plane wave, vary a_0 $a_0 = 50$ r_L $a_0 = 10$ r_L $a_0 = 30$ $y_0 = a_0 \lambda/2\pi$

Modified scaling:

$$r_{L} > y_{0}: \quad p_{y,max} = a_{0}m_{e}c \left(1 - \left(\frac{r_{L}}{y_{0}} - 1\right)^{2}\right)^{1/2}$$

$$r_{L} < y_{0}: \quad p_{y,max} = a_{0}m_{e}c \left(1 - \left(\frac{r_{L}}{y_{0}} - 1\right)^{2}\right)^{1/2}$$

$$r_{L} < y_{0}: \quad p_{y,max} = a_{0}m_{e}c \left(1 - \left(\frac{r_{L}}{y_{0}} - 1\right)^{2}\right)^{1/2}$$

2D PIC reveals electron temperature suppression $40_{40} = 5 \times 10^{21} \text{ W cm}^{-2}$

 $|I_L = 5 \times 10^{20} \,\mathrm{W cm}^{-2}$

MeV

- PIC to self-consistently include plasma fields & dynamics -> 2D PIC simulations using EPOCH2D code
- For a fixed intensity, electron temperature suppressed for small focus

Parametric scan to measure proton energy scaling

- Schreiber model shows good agreement for energy scan using realistic conversion efficiencies (~50%)
- Very poor agreement with focal scan!

Cansai Photon Science Institut

Schreiber model:

- Calculate static sheath potential from e⁻ parameters
- integrate over time τ_{L}

Modified sheath acceleration model for large foci

Sheath acceleration at high repetition & future prospects - energy

30 MeV

- Smooth > 30 MeV beams at 0.1 Hz
- Thinner targets -> higher flux up to ~50 MeV
- Technological challenge @ high repetition rate

43 MeV

 Subsequent experimental campaign enabled increase in laser energy to ~15 J on target

36 MeV

Steel 5 µm target resulted in >40 MeV protons

Sheath acceleration at high repetition & future prospects - current

- Higher currents require high repetition rates and high energy
- Significant challenges in targetry, debris, radiation shielding

- Enormous peak currents possible!
- Beams difficult to transport to applications

• • 10 J	Beam > 10 MeV	1 msr, 1% E _{kin} @ ~10 MeV
- - - - 2 J	~10 ¹¹ particles	~10 ⁷ particles
1J	~10 nC	~ 1 pC
00	~100 kA (peak)	~10 A (peak)
(0.1 Hz)	~1 nA (avg.)	~100 fA (avg.)
(10 Hz)	~100 nA (avg.)	~10 pA (avg.)

Summary

- Investigated acceleration of ions in sheath fields generated by electrons heated by ultra-intense lasers
- Saturation of electron temperature with ultra-intense tightly focused spots, limiting potential energy gain
- Repetitive proton acceleration scales up to 30-40
 MeV, with poor scaling with reducing focal spot size
- Working towards a high flux & high energy repetitive source of protons (and ions) for applications

