超短パルスレーザー加工の統合シミュレーションコードの開発

古河裕之¹⁾、長友英夫²⁾、三間圀興³⁾、矢花一浩⁴⁾、藤田和久³⁾

¹⁾ レーザー総研、²⁾ 阪大レーザー研、³⁾ 光産創大、⁴⁾ 筑波大学計算科学研究センター

1. はじめに

超短パルスレーザー加工では、レーザーの吸収は 厚さ数十 nm の層で生じ、ピコ秒のオーダーで変化 する混相状態物質と、超短パルスレーザーとの相互 作用の理解が重要である。この吸収過程とその後の 輻射流体運動の結果である、アブレーションや溶融 層の生成と凝固を記述する統合シミュレーションコ ードの開発を目指す。図1は、開発する統合シミュ レーションコードの構造である。

図1 開発する統合シミュレーションコードの構造

図2 LAPSIC シミュレーションの流れ

図2は、LAPSIC シミュレーションの流れであり、 図3は、レーザー加熱に伴って生成される多階層状 態の構造の1例である。

統合シミュレーションコードの開発においては、 極めて重要な役割を果たしている混相状態とレーザ ーの相互作用の物理を解明し、モデル化することに より、色々な照射条件での短パルスレーザー加工に 適用可能なシミュレーションコードの開発を目指す。

本年度は、固体とレーザーの相互作用の初期過程 の解明に注視した。固体は、原子が結晶構造を組ん でおり、電子の波動関数に周期性が表れ、所謂バン ド構造を形成する。結晶中の電子の波動関数は、ブ ロッホの定理で表される関数形を持つ。

$$\varphi_{\mu}(\mathbf{r} - \mathbf{t}_{n}) = \exp(i\mathbf{k} \cdot \mathbf{t}_{n})\varphi_{\mu}(\mathbf{r})$$
(1)

第2章で、結晶中の波動関数の簡単な例として、 クローニッヒ・ペニーモデルについて述べる。

2. クローニッヒ・ペニーモデル

レーザー場と相互作用する電子状態を記述する簡 易モデルとして、図4のような井戸型の障壁が周期 的に並んだポテンシャル中の電子状態を考えた。高 さが V_0 で 幅が b, 周期が L=a+bの井戸型のポ テンシャルで、幅 b は b << a とすると、電子状態 はポテンシャルの高さと幅の積 $V_0 b$ 、で決まる。積 $V_0 b$ はポテンシャル障壁の強さと呼ばれる。

図4 井戸型の障壁をもつポテンシャル

上記ポテンシャル中では以下のように比較的簡単 に、conduction band ($E > V_0$) に相当する波動関数を 求めることができる。電子のシュレディンガー方程 式は以下のように書ける。

$$-\frac{\hbar^2}{2m_e}\frac{d^2\varphi_1(x)}{dx^2} = E\,\varphi_1(x) \qquad 0 \le x \le a \tag{2}$$

$$\left[-\frac{\hbar^2}{2m_e}\frac{d^2}{dx^2}+V_0\right]\varphi_2(x)=E\varphi_2(x) \quad -b\leq x\leq 0$$

$$\varphi_2(x) = \mathcal{C}_2^{i\rho} e^{x} + \overline{\mathcal{C}}_2^{\rho} e^{x} \leq \mathbf{40}$$

$$\alpha = \sqrt{2E}$$
(5)

$$a \sqrt{2L} \tag{6}$$

$$\beta = \sqrt{2(E - V_0)} \tag{7}$$

周期境界条件とブロッホの定理から、次の関係式が導ける。

(8) 式が有意な解を持つためには、行列式が 0 で なければならない。

$$\begin{vmatrix} 1 & 1 & -1 & -1 \\ \alpha & -\alpha & -\beta & \beta \\ e^{i\alpha a} & e^{-i\alpha a} & -\lambda e^{-i\beta b} & -\lambda e^{i\beta b} \\ \alpha e^{i\alpha a} - \alpha e^{-i\alpha a} - \lambda \beta e^{-i\beta b} & \lambda \beta e^{i\beta b} \end{vmatrix} = 0$$
(10)

(10) 式から(11) 式が得られる。

$$\cos\sqrt{2Ea} \cdot \cos\sqrt{2(E-V_0)}b$$

$$-\frac{2E-V_0}{2\sqrt{E(E-V_0)}}\sin\sqrt{2Ea} \cdot \sin\sqrt{2(E-V_0)}b$$

$$=\cos kL$$
(11)

Valence band の場合も同様にして、E と k の関係 式が求められる。(12) 式に示す。

$$\cos\sqrt{2E}a\cosh\sqrt{2(V_0 - E)}b + \frac{V_0 - 2E}{2\sqrt{E(V_0 - E)}}\sin\sqrt{2E}a\sinh\sqrt{2(V_0 - E)}b$$
$$= \cos kL$$
(12)

図5は、 $V_0 = 1$ 、L = 7.6521(アルミの格子定数)、 $a = L \times 0.9$ 、b = L - aとして得られたバンド構造である。

図5 得られたバンド構造

3. 時間依存密度汎関数理論

超短パルス光と物質の相互作用、特にパルス光が 照射した直後の電子状態や、光から電子へのエネル ギー移行を正確に見積もるための有効な手法として、 第一原理計算手法である時間依存密度汎関数理論が 挙げられる[1]。本年度は、筑波大学計算科学研究セ ンターの矢花教授にご講演いただき、高強度パルス 光が物質中をどのように伝搬するのか、また光から 物質中の電子にエネルギーが移行する様子について、 有意義な知見を得た。図6は、時間依存密度汎関数 理論による光の物質中での伝搬と吸収に関する解析 の流れの概略図である。

図 6 時間依存密度汎関数理論による光の物質 中での伝搬と吸収に関する解析の流れの概略図

REFERENCE

[1] 矢花一浩; レーザー研究 44 (2016) 789-793.