青色半導体レーザーを用いた高密度励起 連続波 Ti:sapphire レーザーの効率に関する理論解析

片岡俊二[†],柴田正志^{††},小林亮[†],青柳祐宇^{††},前田準哉^{††},川戸栄^{†††},河仲準二^{††††}

[†]福井大学大学院工学研究科気電子工学専攻,^{††}福井大学大学院工学部電気電子工学科,^{††} [†]福井大学学術研究院工学系部門,^{††††}レーザー科学研究所

はじめに

Ti:sapphire レーザーは超短パルスレーザーの代 表ともいえるレーザーである。超短パルスレーザー は様々な分野への応用が期待されているが、励起光 源が固体レーザーであるため、レーザー装置が複雑 かつ大型で高価という課題がある。近年、GaN系半 導体レーザーの長波長化が可能となり、半導体レー ザー励起 Ti:sapphire レーザーの研究も盛んに行われ るようになっている。

現在報告されている青色半導体レーザー励起連 続波 Ti:sapphire レーザーの光-光変換効率は 8.98%[1]、 これに対し緑色半導体レーザー励起の場合は 21.6%[2]が報告されている。青色半導体レーザーと 比較して、緑色半導体レーザーは結晶への吸収効率 が高いため光-光変換効率が高いが、出力が数倍低く 価格も1桁以上高い。このため、半導体レーザー励 起連続波 Ti:sapphire レーザーにおいて、安価で高出 力な青色半導体レーザーを用いて高効率化を目指す のが相応しいと考えた。そこで、本研究では高密度 励起による高利得化を用いて、青色半導体レーザー を用いた連続波 Ti:sapphire レーザーの高効率化に関 する理論解析を行った。

光-光変換効率

まず、レーザーの光-光変換効率η₀₀は、

$$\eta_{oo} = \frac{P_{out}}{P_p} = \eta_a \eta_p \eta_q \eta_c \frac{S}{F}$$
(1)

で与えられる。式(1)は、励起光パワーP。に対しどれだけ出力光パワーPoutを取り出せるかの割合である。表1に式で用いた記号を示す。

衣1 氏で用いた記方			
η_{oo}	光-光変換効率	h	プランク定数
Pout	出力光パワー	v_L	レーザー光周波数
P_p	励起光パワー	V _L	レーザー光モード体積
η_a	励起光吸収効率	ı	結晶長
η_p	励起量子効率	f	レーザー上準位のボルツマン分布の和
η_q	原子量子効率	$r_{p(x,y,x)}$	励起光空間分布関数
η_c	結合効率	$\varphi_{0(x,y,z)}$	レーザー光空間分布関数
5	レーザー光子指数	Toc	出力鏡透過率
F	励起光子指数	L_i	共振器内部損失
S/F	励起光とレーザー光の重なり具合	η_s	スロープ効率
σ_{eff}	誘導放出断面積	P _{th}	発振閾値
τ_f	蛍光寿命	Veff	励起光とレーザー光のモード体積
P.	レーザー光パワー		

表1 式で用いた記号

Sはレーザー光子指数, Fは励起光子指数を拡張した ものであり、S/Fは励起光とレーザー光の重なり具 合を表し、次の式で表される[3]。

$$S = \frac{2\sigma_e \tau_f P_L}{h v_L V_L / l} \tag{2}$$

$$F = \frac{1}{\int_0^1 \int_{-\infty}^\infty \int_{-\infty}^\infty \frac{f r_{p(x,y,z)} V_L \varphi_{0}(x,y,z)}{1 + f S V_L \varphi_{0}(x,y,z)} \, dx \, dy \, dz}$$
(3)

式(1)において、結合効率η。は次の式で表される。

$$\eta_c = \frac{T_{oc}}{T_{oc} + L_i} \tag{4}$$

 T_{oc} は出力鏡透過率, L_i は共振器内部損失である。結合効率 η_c は共振器内の損失に対する出力鏡透過率 T_{oc} の最適化が必要である。また、出力光パワー P_{out} は次の式で近似できる。

$$P_{out} \sim \eta_s \left(P_p - P_{th} \right) \tag{5}$$

 η_s はレーザー光のスロープ効率, P_{th} は発振閾値である。光-光変換効率 η_{oo} を向上させるためには、レーザー光のスロープ効率 η_s を上げ、発振閾値 P_{th} を下げることが望ましい。しかし、発振閾値 P_{th} は励起光とレーザー光のモード体積 V_{eff} に比例する。発振閾値 P_{th} を下げるためにモード体積 V_{eff} を小さくすると、励起光とレーザー光の重なり具合S/Fが悪くなり、光-光変換効率 η_{oo} が低下する。このため、光-光変換効率 η_{oo} の向上には、モード体積 V_{eff} と出力鏡透過率 T_{oc} を最適な条件にすることが必要である。

解析条件

青色半導体レーザーを用いた高密度励起連続波 Ti:sapphire レーザーの高効率化を行うために、出力 3.5 W の青色半導体レーザーを用い、励起光のモー ド体積を最小とすることで集光強度*I* を高め解析を 行う。また、励起光源である青色半導体レーザーは、 ビーム品質*M*²が悪く非点収差があるため、解析では ビーム径及びビーム品質が垂直、水平方向で異なる 楕円モデルを用いた。

まず、励起光のビーム品質M²は、出力 3.5 W の 青色半導体レーザーの実測値より、垂直方向 1.39, 水平方向 13.5 とした。また、励起光波長は実測値よ り 448 nm とした。発振閾値P_{th}を低減させ、かつ集 光強度I₂を高めるため、結晶内で励起光のモード体 積が最小となるように励起光のスポット半径を垂直 方向 14 μ m, 水平方向 43 μ m とした。レーザー結晶 として、イオンドープ濃度 0.25 wt.%, FOM=200 の ブリュースターカットされた 5 mm 角の Ti:sapphire 結晶で解析を行った。励起光吸収効率 η_a は実測値よ り 78.5%とし、誘導放出断面積 σ_{eff} は 30×10⁻²⁰ cm², 蛍光寿命 τ_f は 3.2 μ s, 励起量子効率 η_p は 100%, レー ザー光波長 ν_r は 765 nm とした。

次に、共振器内部損失 L_i は実験結果で得られた 入出力特性の発振閾値 P_{re} から見積もった値を用い た。発振閾値付近では出力鏡透過率 T_{oc} の変化に対し てモード体積が変わらないと仮定し、得られた発振 閾値と出力鏡透過率の関係から共振器内部損失を見 積もった。比較した結果、共振器内部損失は 4~10% の間と見積もれた。よって、共振器内部損失 L_i を4%, 6%, 8%, 10%と変化させ比較を行う。また、高密度励 起として青色半導体レーザー1 つ当たりの集光強度 を $L_p=200$ [kW/cm²]とし、集光強度 L_p を 200, 400, 800[kW/cm²]と愛化させ、同様に比較を行う。さらに、 高効率化のためには、出力鏡透過率を最適な条件に することも必要であるため。出力鏡透過率 T_{oc} を2,5, 10, 15, 20%と変化させ、同様に比較を行う。

解析結果

結晶内の励起光ビーム半径Wp とレーザー光ビ ーム半径WL の比WL /Wp を光軸方向で分布させるこ とで、光-光変換効率ηoo はビーム径比WL /Wp の関数 となる。図 2,3 に、集光強度Ip 及び共振器内部損失Li を変化させた時の、出力鏡透過率 Toc ごとの光-光変 換効率ηoo をビーム径比WL /Wp の関数として示す。

図3 集光強度L_p=400 [kW/cm²]の場合の ビーム径比に対する光-光変換効率

図 2(a)は集光強度 **I**_p=200 [kW/cm²], 共振器内 部損失**L**_i=4%の場合のビーム径比に対する光-光変 換効率であり、図 2(b)は集光強度 **I**_p=200 [kW/cm²], 共振器内部損失**L**_i=8%の場合のビーム径比に対する 光-光変換効率である。同様に、図 3(a), 3(b)は集光強 度 **L**_p=400 [kW/cm²], 共振器内部損失**L**_i=4%, **L**_i=8% の場合のビーム径比に対する光-光変換効率である。

励起光の集光強度I_p=200 [kW/cm²]の場合、共振 器内部損失Li=4%,出力鏡透過率Toc=5%のとき、光-光変換効率が 14.5%である。これに対して、集光強 度 I_p =400 [kW/cm²]の場合、共振器内部損失 L_i =4%, 出力鏡透過率Toc=10%のとき、光-光変換効率が 21.1%と効率が向上している。同様に共振器内部損 失L;=8%の場合も効率が向上している。この事から、 高密度励起を用いた高利得化により、青色半導体レ ーザー励起連続波 Ti:sapphire レーザーの高効率化が 可能であると考えられる。さらに、集光強度In=400 [kW/cm²]の場合では、共振器内部損失L_i=4%, 出力 鏡透過率**T_{oc}=10%**のとき光-光変換効率が 21.1%と、 緑色半導体レーザー励起の世界最高効率 21.6%と同 等の効率が得られた。また、集光強度 In=800 [kW/cm²]の場合も、緑色半導体レーザー励起の世界 最高効率同様の効率が得られることが効率計算から 得られた。図4に集光強度 I_p=800 [kW/cm²], 共振器 内部損失Li=8%の場合の出力鏡透過率 Toc ごとのビ ーム径比に対する光-光変換効率を示す。

共振器内部損失L_i=8%,出力鏡透過率T_{oc}=20%のとき光-光変換効率が21.1%と同様の効率が得られた。 この事から、損失が高い場合でも高密度励起による 高利得化が高効率化に有効であると考えられる。

まとめ

青色半導体レーザーを用いた高密度励起連続波 Ti:sapphire レーザーの効率に関する理論解析を行っ た。解析により、青色半導体レーザーを用いた高密 度励起は、集光強度I_p=800 [kW/cm²]の場合、共振器 内部損失L_i=8%,出力鏡透過率T_{oc}=20%のとき、光-光変換効率η_{oo}は 21.1%が望める。

参考文献

[1] P. W. Roth, et al. "Power scaling of a diode-laser-pumped Ti:sapphire laser," Opt. Express20 (18), pp. 20629-20634, August 2012.

[2] K. Gurel, et al. "Green-diode-pumped femtosecond Ti:Sapphre laser with up to 450 mW average power," Opt. Express23 (23), pp. 30043-30048, November2015.

[3] W. P. Risk, "Modeling of longitudinally pumped solid-state lasers exhibiting reabsorption losses," J. Opt. Soc. Am. B 5(7), pp.1412-1423, July1988.